Facile synthesis of pH sensitive polymer-coated mesoporous silica nanoparticles and their application in drug delivery

pH-responsive polymer shell chitosan/poly (methacrylic acid) (CS-PMAA) was coated on mesoporous silica nanoparticles (MSN) through the facile in situ polymerization method. The resultant composite microspheres showed a flexible control over shell thickness, surface charges and hydrodynamic size by a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of pharmaceutics Vol. 421; no. 2; pp. 388 - 396
Main Authors Tang, Hongyan, Guo, Jia, Sun, Yang, Chang, Baisong, Ren, Qingguang, Yang, Wuli
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.12.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:pH-responsive polymer shell chitosan/poly (methacrylic acid) (CS-PMAA) was coated on mesoporous silica nanoparticles (MSN) through the facile in situ polymerization method. The resultant composite microspheres showed a flexible control over shell thickness, surface charges and hydrodynamic size by adjusting the feeding amount of MSN and the molar ratio of [–NH2]/MAA. The MSN/CS-PMAA composite microspheres were stable in the pH range of 5–8 as well as in the physiological saline (0.15M NaCl). Doxorubicin hydrochloride (DOX) was applied as a model drug to investigate the drug storage and release behavior. The results demonstrated that DOX could be effectively loaded into the composite microspheres. The cumulative release of DOX-loaded composite microspheres was pH dependent and the release rate was much faster at low pH (5.5) than that of pH 7.4. The cytotoxicity test by MTT assay showed that the blank carrier MSN/CS-PMAA microspheres were suitable as drug carriers. The cellular uptake of composite microspheres was investigated by confocal laser scanning microscopy (CLSM), which indicated that MSN/CS-PMAA could deliver the drugs into HeLa cell. The above results imply that the composite microspheres are a promising drug delivery system for cancer therapy.
Bibliography:http://dx.doi.org/10.1016/j.ijpharm.2011.10.013
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2011.10.013