Three-dimensional imaging of magnetic domains
Magnetic domains have been the subject of much scientific investigation since their theoretical existence was first postulated by P.-E. Weiss over a century ago. Up to now, the three-dimensional (3D) domain structure of bulk magnets has never been observed owing to the lack of appropriate experiment...
Saved in:
Published in | Nature communications Vol. 1; no. 1; p. 125 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.11.2010
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Magnetic domains have been the subject of much scientific investigation since their theoretical existence was first postulated by P.-E. Weiss over a century ago. Up to now, the three-dimensional (3D) domain structure of bulk magnets has never been observed owing to the lack of appropriate experimental methods. Domain analysis in bulk matter thus remains one of the most challenging tasks in research on magnetic materials. All current domain observation methods are limited to studying surface domains or thin magnetic films. As the properties of magnetic materials are strongly affected by their domain structure, the development of a technique capable of investigating the shape, size and distribution of individual domains in three dimensions is of great importance. Here, we show that the novel technique of Talbot-Lau neutron tomography with inverted geometry enables direct imaging of the 3D network of magnetic domains within the bulk of FeSi crystals.
The imaging of magnetic domains in three-dimensional solids has been hampered by a lack of suitable methods. The authors show that Talbot-Lau neutron tomography is capable of visualizing the domain structure of an iron silicide bulk crystal. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms1125 |