Formation of three-dimensionally integrated nanocrystalline silicon particles by dip-coating method
Printable technologies using silicon nanoink, in which nanocrystalline silicon (nc-Si) quantum dots are dispersed in solvents, are promising for novel electron and photonic device applications. The dip-coating method is applied for the first time to fabricate three-dimensionally integrated structure...
Saved in:
Published in | Japanese Journal of Applied Physics Vol. 54; no. 10; pp. 105001 - 105005 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
The Japan Society of Applied Physics
01.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Printable technologies using silicon nanoink, in which nanocrystalline silicon (nc-Si) quantum dots are dispersed in solvents, are promising for novel electron and photonic device applications. The dip-coating method is applied for the first time to fabricate three-dimensionally integrated structures of nc-Si quantum dots with a uniform size of 10 nm prepared by the very high frequency plasma decomposition of silane gas. We have clarified the major problem of the dip-coating method, which is the formation of stripe structures. To circumvent this problem, we have proposed two methods: coating onto line-and-space-patterned substrates and utilization of electrophoresis force. We have successfully demonstrated the control of the position and number of layers of nc-Si by using a line-and-space-patterned substrate, however, with a limited shape. We have clarified the conditions of the formation of stripe-free regions by varying applied voltage and nc-Si concentration in the electrophoresis method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.7567/JJAP.54.105001 |