QUANTUM DOT SINGLE MOLECULE TRACKING REVEALS A WIDE RANGE OF DIFFUSIVE MOTIONS OF MEMBRANE TRANSPORT PROTEINS
Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellula...
Saved in:
Published in | Proceedings of SPIE, the international society for optical engineering Vol. 7489 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
03.03.2009
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellular epitopes. Software was created to deduce particle diffusive modes from quantum dot trajectories. SPT of aquaporin (AQP) water channels and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels revealed several types of diffusion. AQP1 was freely mobile in cell membranes, showing rapid, Brownian-type diffusion. The full-length (M1) isoform of AQP4 also diffused rapidly, though the diffusion of a shorter (M23) isoform of AQP4 was highly restricted due to its supermolecular assembly in raft-like orthogonal arrays. CFTR mobility was also highly restricted, in a spring-like potential, due to its tethering to the actin cytoskeleton through PDZ-domain C-terminus interactions. The biological significance of regulated diffusion of membrane transport proteins is a subject of active investigation. |
---|---|
ISSN: | 0277-786X |
DOI: | 10.1117/12.816900 |