QUANTUM DOT SINGLE MOLECULE TRACKING REVEALS A WIDE RANGE OF DIFFUSIVE MOTIONS OF MEMBRANE TRANSPORT PROTEINS

Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellula...

Full description

Saved in:
Bibliographic Details
Published inProceedings of SPIE, the international society for optical engineering Vol. 7489
Main Authors Crane, Jonathan M, Haggie, Peter M, Verkman, A S
Format Journal Article
LanguageEnglish
Published United States 03.03.2009
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellular epitopes. Software was created to deduce particle diffusive modes from quantum dot trajectories. SPT of aquaporin (AQP) water channels and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels revealed several types of diffusion. AQP1 was freely mobile in cell membranes, showing rapid, Brownian-type diffusion. The full-length (M1) isoform of AQP4 also diffused rapidly, though the diffusion of a shorter (M23) isoform of AQP4 was highly restricted due to its supermolecular assembly in raft-like orthogonal arrays. CFTR mobility was also highly restricted, in a spring-like potential, due to its tethering to the actin cytoskeleton through PDZ-domain C-terminus interactions. The biological significance of regulated diffusion of membrane transport proteins is a subject of active investigation.
ISSN:0277-786X
DOI:10.1117/12.816900