Inhibition of histone deacetylase1 induces autophagy
Autophagy is a process where cytoplasmic materials are degraded by lysosomal machinery. Histone deacetylase (HDAC) inhibitors induce autophagy, and HDAC6, one of class II HDAC isotypes, is directly involved in autophagic degradation in the cell. However, it is unclear if class I HDAC isotype such as...
Saved in:
Published in | Biochemical and biophysical research communications Vol. 369; no. 4; pp. 1179 - 1183 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
16.05.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Autophagy is a process where cytoplasmic materials are degraded by lysosomal machinery. Histone deacetylase (HDAC) inhibitors induce autophagy, and HDAC6, one of class II HDAC isotypes, is directly involved in autophagic degradation in the cell. However, it is unclear if class I HDAC isotype such as HDCA1 is involved in this process. To investigate if class I HDAC isotype is involved in autophagy, a specific class I HDAC inhibitor and an siRNA of HDAC1 were used to treat HeLa cells. Autophagic markers were then investigated. Both inhibition and genetic knock-down of HDAC1 in the cells significantly induced autophagic vacuole formation and lysosome function. Moreover, disruption of HDAC1 leads to the conversion of LC3-I to LC3-II. Together, these results demonstrate that HDAC1 could play a role in autophagy and specific inhibition of HDAC1 can induce autophagy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2008.03.019 |