Anti-human ovarian cancer and cytotoxicity effects of nickel nanoparticles green-synthesized by Alhagi maurorum leaf aqueous extract
Alhagi maurorum (camelthorn) is one of the popular medicinal plants. The plant has many pharmaceutical uses in traditional medicine. In this study, nickel nanoparticles were synthesized according to green chemistry rules using the aqueous extract of A. maurorum. The green-synthesized NiNPs were char...
Saved in:
Published in | Journal of experimental nanoscience Vol. 17; no. 1; pp. 113 - 125 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
31.12.2022
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Alhagi maurorum (camelthorn) is one of the popular medicinal plants. The plant has many pharmaceutical uses in traditional medicine. In this study, nickel nanoparticles were synthesized according to green chemistry rules using the aqueous extract of A. maurorum. The green-synthesized NiNPs were characterized using different techniques such as EDX, FE-SEM, XRD, UV-vis and FT-IR. The FE-SEM results confirm spherical morphology for the nanoparticles with size of 20.56-36.63 nm. In the oncological part of the present study, the treated cells with NiNPs were assessed by MTT assay for 48 h about the cytotoxicity and anti-human ovarian cancer properties on normal (HUVEC) and ovarian cancer cell lines i.e. OVCAR-3, ES-2, TOV-21G, OV-90 and UWB1.289. The viability of malignant ovarian cell lines reduced dose-dependently in the presence of NiNPs. The IC
50
of NiNPs was 191, 312, 250, 396 and 241 µg/mL against OVCAR-3, ES-2, TOV-21G, OV-90 and UWB1.289 cell lines respectively. |
---|---|
ISSN: | 1745-8080 1745-8099 |
DOI: | 10.1080/17458080.2021.2011860 |