Mimosa (Mimosa caesalpiniifolia) prevents oxidative DNA damage induced by cadmium exposure in Wistar rats

Abstract The Mimosa (Mimosa caesalpiniifolia) is a plant native from South America; it is used in the traditional medicine systems for treating bacterial, fungal, parasitic and inflammatory conditions. The aim of this study was to evaluate the antigenotoxic and antioxidant activities induced by mimo...

Full description

Saved in:
Bibliographic Details
Published inToxicology mechanisms and methods Vol. 24; no. 8; pp. 567 - 574
Main Authors Silva, Marcelo Jose Dias, Vilegas, Wagner, Silva, Marcelo Aparecido da, de Moura, Carolina Foot Gomes, Ribeiro, Flávia Andressa Pidone, da Silva, Victor Hugo Pereira, Ribeiro, Daniel Araki
Format Journal Article
LanguageEnglish
Published England Informa Healthcare USA, Inc 01.12.2014
Taylor & Francis
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract The Mimosa (Mimosa caesalpiniifolia) is a plant native from South America; it is used in the traditional medicine systems for treating bacterial, fungal, parasitic and inflammatory conditions. The aim of this study was to evaluate the antigenotoxic and antioxidant activities induced by mimosa (M. caesalpiniifolia) in multiple rodent organs subjected to intoxication with cadmium chloride. A total of 40 Wistar rats (8 weeks old, 250 g) were distributed into eight groups (n = 5), as follows: Control group (non-treated group, CTRL); Cadmium exposed group (Cd); cadmium exposure and treated with extract at 62.5 mg/kg/day; cadmium exposure and treated with extract at 125 mg/kg/day; cadmium exposure and treated with extract at 250 mg/kg/day; cadmium exposure and treated with ethyl acetate fraction at 62.5 mg/kg/day. For evaluating the toxicogenetic potential of mimosa, two groups were included in the study being treated with extract at 250 mg/kg/day and acetate fraction of mimosa at 62 mg/kg/day, only. Extract of mimosa at concentrations of 62.5 and 125 mg decreased DNA damage in animals intoxicated with cadmium when compared to cadmium group. In a similar manner, treatment with ethyl acetate fraction of mimosa at 62.5 mg concentration in animals previously exposed to cadmium reduced genetic damage in peripheral blood cells. In a similar manner, the treatment with ethyl acetate fraction reduced DNA damage in liver cells. Oxidative DNA damage was reduced to animals exposed to cadmium and treated with 125 mg of extract as well as those intoxicated to cadmium and treated with 62.5 of acetate fraction of mimosa. Taken together, our results indicate that mimosa prevents genotoxicity induced by cadmium exposure in liver and peripheral blood cells of rats as a result of antioxidant activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1537-6516
1537-6524
DOI:10.3109/15376516.2014.955230