Evaluation of the acute toxicity and neurodevelopmental inhibition of perfluorohexanoic acid (PFHxA) in zebrafish embryos

Perfluorohexanoic acid (PFHxA), a widely used emerging alternative for 8-carbon PFAAs, has been detected at a high level in the water environment. While its toxicity and environmental health risk are still largely unknown in aquatic life. The present study aimed to evaluated the possible development...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 225; p. 112733
Main Authors Guo, Xiaochun, Zhang, Shengnan, Liu, Xiaohui, Lu, Shaoyong, Wu, Qin, Xie, Ping
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Perfluorohexanoic acid (PFHxA), a widely used emerging alternative for 8-carbon PFAAs, has been detected at a high level in the water environment. While its toxicity and environmental health risk are still largely unknown in aquatic life. The present study aimed to evaluated the possible developmental neurotoxicity induced by PFHxA exposure (0, 0.48, 2.4, and 12 mg/L for 120 h) in the zebrafish embryo. Here, both developmental endpoints, neurotransmitters concentrations, locomotor behavior were analyzed. No significant effects on mortality, malformation rate, and growth delay were detected in the low dose treatment groups except for in the high dose group (12 mg/L). A significant increase in swimming speed were noted in the 0.48 mg/L group. Other changes including neurotransmitters concentrations and green fluorescent protein (GFP) expression in Tg (HuC-GFP) zebrafish larvae were significantly increased in 12 mg/L group. Beyond that, genes related to neurodevelopment were significantly decreased in larvae. Moreover, downregulations of protein expression levels of α1-tubulin, elavl3, and gap43 were identified. These results demonstrate that the PFAAs alternative PFHxA have no significant neurodevelopmental effects on zebrafish larvae under acute low-dose exposure, while, it is important to note that PFHxA perform inhibiting effects on neurotransmitter and central nervous system under a relatively high dose. This in vivo study could provide reliable toxicity information for risk assessments of PFHxA on aquatic ecosystems. PFHxA have no significant neurodevelopmental effects on zebrafish larvae under acute low-dose exposure, while exposed with relatively high-dose, could induced the alternations of neurotransmitter concentrations as well as the genes involved in the early developmental stages of zebrafish, leading to the impairment of the nervous system in zebrafish larvae. •Zebrafish embryos were exposed to different concentrations of PFHxA for 120 h.•PFHxA have no significant neurodevelopmental effects under acute low-dose exposure.•High dose of PFHxA decrease neuron-specific GFP expression in transgenic zebrafish larvae.•The inhibiting effects might be associated with PFHxA-induced developmental neurotoxicity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2021.112733