Phosphorylation-dependent interactions of myosin-binding protein C and troponin coordinate the myofilament response to protein kinase A

PKA-mediated phosphorylation of sarcomeric proteins enhances heart muscle performance in response to β-adrenergic stimulation and is associated with accelerated relaxation and increased cardiac output for a given preload. At the cellular level, the latter translates to a greater dependence of Ca2+ s...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 299; no. 1; p. 102767
Main Authors Sevrieva, Ivanka R., Ponnam, Saraswathi, Yan, Ziqian, Irving, Malcolm, Kampourakis, Thomas, Sun, Yin-Biao
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2023
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:PKA-mediated phosphorylation of sarcomeric proteins enhances heart muscle performance in response to β-adrenergic stimulation and is associated with accelerated relaxation and increased cardiac output for a given preload. At the cellular level, the latter translates to a greater dependence of Ca2+ sensitivity and maximum force on sarcomere length (SL), that is, enhanced length-dependent activation. However, the mechanisms by which PKA phosphorylation of the most notable sarcomeric PKA targets, troponin I (cTnI) and myosin-binding protein C (cMyBP-C), lead to these effects remain elusive. Here, we specifically altered the phosphorylation level of cTnI in heart muscle cells and characterized the structural and functional effects at different levels of background phosphorylation of cMyBP-C and with two different SLs. We found Ser22/23 bisphosphorylation of cTnI was indispensable for the enhancement of length-dependent activation by PKA, as was cMyBP-C phosphorylation. This high level of coordination between cTnI and cMyBP-C may suggest coupling between their regulatory mechanisms. Further evidence for this was provided by our finding that cardiac troponin (cTn) can directly interact with cMyBP-C in vitro, in a phosphorylation- and Ca2+-dependent manner. In addition, bisphosphorylation at Ser22/Ser23 increased Ca2+ sensitivity at long SL in the presence of endogenously phosphorylated cMyBP-C. When cMyBP-C was dephosphorylated, bisphosphorylation of cTnI increased Ca2+ sensitivity and decreased cooperativity at both SLs, which may translate to deleterious effects in physiological settings. Our results could have clinical relevance for disease pathways, where PKA phosphorylation of cTnI may be functionally uncoupled from cMyBP-C phosphorylation due to mutations or haploinsufficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1016/j.jbc.2022.102767