Recent development in integrated Lithium niobate photonics
The lithium niobate on insulator devices confine the light field to submicron size in monocrystalline lithium niobate, to achieve ultra-strong electro-optical interaction and nonlinear optical interaction, and thus extend the frontiers of the photonic research in the past decade. Such devices are ma...
Saved in:
Published in | Advances in physics: X Vol. 9; no. 1 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
31.12.2024
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The lithium niobate on insulator devices confine the light field to submicron size in monocrystalline lithium niobate, to achieve ultra-strong electro-optical interaction and nonlinear optical interaction, and thus extend the frontiers of the photonic research in the past decade. Such devices are manufactured using nano-fabrication technology over the thin-film lithium niobate wafer, which usually stands on a silica insulator layer above the substrate material, including low-loss waveguides, electro-optical modulators, domain engineered structures, high-Q microring resonators and electrical filters etc., and lead to breakthroughs in optical communication, microwave photonics and quantum integration. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2374-6149 2374-6149 |
DOI: | 10.1080/23746149.2024.2322739 |