Inertial measurement with solid-state spins of nitrogen-vacancy center in diamond
The nitrogen-vacancy (NV) center is one of the major platforms in the evolving field of quantum technologies. The inertial surveying technology based on NV centers in diamond is a developing field with both scientific and technological importance. Quantum measurement using the solid-state spin of th...
Saved in:
Published in | Advances in physics: X Vol. 7; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
31.12.2022
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The nitrogen-vacancy (NV) center is one of the major platforms in the evolving field of quantum technologies. The inertial surveying technology based on NV centers in diamond is a developing field with both scientific and technological importance. Quantum measurement using the solid-state spin of the NV center has demonstrated potential in both high-precision and small-volume low-cost devices. In terms of rotation measurement, the optically detected magnetic resonance has provided a perspective of the rotation measurement mechanism via the solid-state spin of the NV center. A new type of gyroscope based on the solid-state spin in diamond according to the theory has attracted considerable attention. In addition, combined with the ingenious quantum mechanics manipulation and coupling mechanism, acceleration measurement can be achieved through an efficient quantum detection technology of the NV center. This review summarizes the recent research progress in diamond-based inertial measurement, including sensitivity optimization methods for inertial measurement systems based on the NV center. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2374-6149 2374-6149 |
DOI: | 10.1080/23746149.2021.2004921 |