Multidimensional soliton systems
This concise review aims to provide a summary of the most relevant recent experimental and theoretical results for solitons, i.e. self-trapped bound states of nonlinear waves, in two- and three-dimensional (2D and 3D) media. In comparison with commonly known one-dimensional solitons, which are, norm...
Saved in:
Published in | Advances in physics: X Vol. 9; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
31.12.2024
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This concise review aims to provide a summary of the most relevant recent experimental and theoretical results for solitons, i.e. self-trapped bound states of nonlinear waves, in two- and three-dimensional (2D and 3D) media. In comparison with commonly known one-dimensional solitons, which are, normally, stable modes, a challenging problem is the propensity of 2D and 3D solitons to instability, caused by the occurrence of the critical or supercritical wave collapse (catastrophic self-compression) in the same spatial dimensions. A remarkable feature of multidimensional solitons is their ability to carry vorticity; however, 2D vortex rings and 3D vortex tori are subject to a strong splitting instability. Therefore, it is natural to categorize the basic results according to physically relevant settings which make it possible to stabilize fundamental (non-topological) and vortex solitons against the collapse and splitting, respectively. The present review is focused on schemes that were recently elaborated in terms of Bose-Einstein condensates and similar photonic setups. These are two-component systems with spin-orbit coupling, and ones stabilized by the beyond-mean-field Lee-Huang-Yang effect. The latter setting has been implemented experimentally, giving rise to stable self-trapped quasi-2D and 3D quantum droplets. Characteristic examples of stable three-dimensional solitons: a semi-vortex (top) and mixed-mode (bottom) modes in the binary Bose-Einstein condensate, stabilized by the spin-orbit coupling. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2374-6149 2374-6149 |
DOI: | 10.1080/23746149.2023.2301592 |