The Role of Dynamic DNA Methylation in Liver Transplant Rejection in Children

Background. Transcriptional regulation of liver transplant (LT) rejection may reveal novel predictive and therapeutic targets. The purpose of this article is to test the role of differential DNA methylation in children with biopsy-proven acute cellular rejection after LT. Methods. Paired peripheral...

Full description

Saved in:
Bibliographic Details
Published inTransplantation direct Vol. 8; no. 11; p. e1394
Main Authors Ningappa, Mylarappa, Shao, Xiaojian, Ashokkumar, Chethan, Xu, Qingyong, Zeevi, Adriana, Grundberg, Elin, Pastinen, Tomi, Sindhi, Rakesh
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott Williams & Wilkins 01.11.2022
Wolters Kluwer
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background. Transcriptional regulation of liver transplant (LT) rejection may reveal novel predictive and therapeutic targets. The purpose of this article is to test the role of differential DNA methylation in children with biopsy-proven acute cellular rejection after LT. Methods. Paired peripheral blood DNA samples were obtained before and after LT from 17 children, including 4 rejectors (Rs) and 13 nonrejectors (NRs), and assayed with MethylC capture sequencing approach covering 5 million CpGs in immune-cell–specific regulatory elements. Differentially methylated CpGs (DMCs) were identified using generalized linear regression models adjusting for sex and age and merged into differentially methylated regions (DMRs) comprising 3 or more DMCs. Results. Contrasting Rs versus NRs, we identified 2238 DMCs in post-LT and 2620 DMCs in pre-LT samples, which clustered in 216 and 282 DMRs, respectively. DMCs associated with R were enriched in enhancers and depleted in promoters. Among DMRs, the proportion of hypomethylated DMRs increased from 61/282 (22%) in pre-LT to 103/216 (48%, P < 0.0001) in post-LT samples. The highest-ranked biological processes enriched in post-LT DMCs were antigen processing and presentation via major histocompatibility complex (MHC) class I, MHC class I complex, and peptide binding ( P < 7.92 × 10 −17 ), respectively. Top-ranked DMRs mapped to genes that mediate B-cell receptor signaling ( ADAP1 ) or regulate several immune cells (ARRB2 ) ( P < 3.75 × 10 −08 ). DMRs in MHC class I genes were enriched for single nucleotide polymorphisms (SNPs), which bind transcription factors, affect gene expression and splicing, or alter peptide-binding amino acid sequences. Conclusions. Dynamic methylation in distal regulatory regions reveals known transplant-relevant MHC-dependent rejection pathways and identifies novel loci for future mechanistic evaluations in pediatric transplant subcohorts.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2373-8731
2373-8731
DOI:10.1097/TXD.0000000000001394