Mutational analysis of the N-glycosylation sites of Duffy antigen/receptor for chemokines

The Duffy antigen/receptor for chemokines (DARC) is a seven-transmembrane glycoprotein carrying the Duffy (Fy) blood group antigen. The polypeptide chain of DARC contains two NSS motifs at positions 16 and 27 and one NDS motif at position 33 that represent canonical sequences for efficient N-glycosy...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 356; no. 3; pp. 816 - 821
Main Authors Czerwinski, Marcin, Kern, Joanna, Grodecka, Magdalena, Paprocka, Maria, Krop-Watorek, Anna, Wasniowska, Kazimiera
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 11.05.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Duffy antigen/receptor for chemokines (DARC) is a seven-transmembrane glycoprotein carrying the Duffy (Fy) blood group antigen. The polypeptide chain of DARC contains two NSS motifs at positions 16 and 27 and one NDS motif at position 33 that represent canonical sequences for efficient N-glycosylation. To verify whether all of these three sites are occupied by a sugar chain, we generated mutants in which potential N-glycosylation sites (AsnXSer) were removed by replacement of serine by alanine. Seven DARC glycosylation variants, missing one (S18A, S29A, S35A), two (S18A.S29A, S18A.S35A, S29A.S35A), or three (S18A.S29A.S35A) glycosylation sites, were obtained. cDNA encoding DARC mutants was cloned into the eukaryotic expression vector pcDNA3.1/myc-HisA and expressed in human K562 cells. Stable transfectants expressing wild-type or mutated forms of Duffy were then lysed, purified by metal-affinity chromatography, and subjected to Western blots with an anti-Duffy monoclonal antibody. The gel electrophoresis data indicate that all three canonical sites are used for sugar attachment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2007.03.054