Transferrin receptor 2: a new molecule in iron metabolism

Transferrin receptor 1 (TfR1) which mediates uptake of transferrin-bound iron, is essential for life in mammals. Recently, a close homologue of human transferrin receptor 1 was cloned and called transferrin receptor 2 (TfR2). A similar molecule has been identified in the mouse. Human transferrin rec...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of biochemistry & cell biology Vol. 35; no. 3; pp. 292 - 296
Main Authors Trinder, Debbie, Baker, Erica
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.03.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transferrin receptor 1 (TfR1) which mediates uptake of transferrin-bound iron, is essential for life in mammals. Recently, a close homologue of human transferrin receptor 1 was cloned and called transferrin receptor 2 (TfR2). A similar molecule has been identified in the mouse. Human transferrin receptor 2 is 45% identical with transferrin receptor 1 in the extracellular domain, but contains no iron responsive element in its mRNA and is apparently not regulated by intracellular iron concentration nor by interaction with HFE. Transferrin receptor 2, like transferrin receptor 1, binds transferrin in a pH-dependent manner (but with 25 times lower affinity) and delivers iron to cells. However, transferrin receptor 2 distribution differs from transferrin receptor 1, increasing in differentiating hepatocytes and decreasing in differentiating erythroblasts. Expression of both receptors is cell cycle dependent. Mutations in the human transferrin receptor 2 gene cause iron overload disease, suggesting it has a role in iron homeostasis.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1357-2725
1878-5875
DOI:10.1016/S1357-2725(02)00258-3