Lipase-catalyzed production of a bioactive fatty amide derivative of 7,10-dihydroxy-8( E)-octadecenoic acid

Enzymatic syntheses of fatty amides are of considerable interest due to their wide ranging industrial applications in detergents, shampoo, cosmetics and surfactant formulations. Amidation reaction of Candida antarctica lipase B (CALB) was investigated for direct amidation of carboxylic acid in organ...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 100; no. 3; pp. 1482 - 1485
Main Authors Khare, Sunil K., Kumar, Anand, Kuo, Tsung Min
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2009
[New York, NY]: Elsevier Ltd
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Enzymatic syntheses of fatty amides are of considerable interest due to their wide ranging industrial applications in detergents, shampoo, cosmetics and surfactant formulations. Amidation reaction of Candida antarctica lipase B (CALB) was investigated for direct amidation of carboxylic acid in organic solvent. CALB-mediated production of a novel secondary amide was carried out by reacting the hydroxy oleic acid derivative, 7,10-dihydroxy-8( E)-octadecenoic acid (DOD), with N-methylethanol amine in organic solvent medium. A single, new product peak corresponding to the secondary amide of DOD (D2AM) was detected by high-performance liquid chromatography and thin-layer chromatography. The production of D2AM was achieved in high yields (95%) after 72 h at 50 °C in a CALB-catalyzed reaction that contained 100 IU enzyme activity, 50 mM DOD, and 100 mM N-methylethanol amine in isoamyl alcohol. The new fatty amide D2AM displayed potent antimicrobial activity towards Gram-positive ( Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria ( Proteus vulgaris and Klebsiella pneumonae). D2AM also exhibited antioxidative activity by its α,α-diphenyl-β-picryl-hydrazyl (DPPH) radicals scavenging effects.
Bibliography:http://hdl.handle.net/10113/29412
http://dx.doi.org/10.1016/j.biortech.2008.08.011
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2008.08.011