Daily measures of microbes and human health at a non-point source marine beach
Studies evaluating the relationship between microbes and human health at non-point source beaches are necessary for establishing criteria which would protect public health while minimizing economic burdens. The objective of this study was to evaluate water quality and daily cumulative health effects...
Saved in:
Published in | Journal of water and health Vol. 9; no. 3; pp. 443 - 457 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IWA Publishing
01.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Studies evaluating the relationship between microbes and human health at non-point source beaches are necessary for establishing criteria which would protect public health while minimizing economic burdens. The objective of this study was to evaluate water quality and daily cumulative health effects (gastrointestinal, skin, and respiratory illnesses) for bathers at a non-point source subtropical marine recreational beach in order to better understand the inter-relationships between these factors and hence improve monitoring and pollution prevention techniques. Daily composite samples were collected, during the Oceans and Human Health Beach Exposure Assessment and Characterization Health Epidemiologic Study conducted in Miami (Florida, USA) at a non-point source beach, and analyzed for several pathogens, microbial source tracking markers, indicator microbes, and environmental parameters. Analysis demonstrated that rainfall and tide were more influential, when compared to other environmental factors and source tracking markers, in determining the presence of both indicator microbes and pathogens. Antecedent rainfall and F+ coliphage detection in water should be further assessed to confirm their possible association with skin and gastrointestinal (GI) illness outcomes, respectively. The results of this research illustrate the potential complexity of beach systems characterized by non-point sources, and how more novel and comprehensive approaches are needed to assess beach water quality for the purpose of protecting bather health. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1477-8920 1996-7829 |
DOI: | 10.2166/wh.2011.146 |