Exploring metro vibrancy and its relationship with built environment: a cross-city comparison using multi-source urban data

Recent urban transformations have led to critical reflections on the blighted urban infrastructures and called for re-stimulating vital urban places. Especially, the metro has been recognized as the backbone infrastructure for urban mobility and the associated economy agglomeration. To date, limited...

Full description

Saved in:
Bibliographic Details
Published inGeo-spatial information science Vol. 25; no. 2; pp. 182 - 196
Main Authors Tu, Wei, Zhu, Tingting, Zhong, Chen, Zhang, Xiaohu, Xu, Yang, Li, Qingquan
Format Journal Article
LanguageEnglish
Published Wuhan Taylor & Francis 03.04.2022
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent urban transformations have led to critical reflections on the blighted urban infrastructures and called for re-stimulating vital urban places. Especially, the metro has been recognized as the backbone infrastructure for urban mobility and the associated economy agglomeration. To date, limited research has been devoted to investigating the relationship between metro vitality and built environment in mega-cities empirically. This paper presents a multisource urban data-driven approach to quantify the metro vibrancy and its association with the underlying built environment. Massive smart card data is processed to extract metro ridership, which denotes the vibrancy around the metro station in physical space. Social media check-ins are crawled to measure the vitality of metros in virtual spaces. Both physical and virtual vibrancy are integrated into a holistic metro vibrancy metric using an entropy-based weighting method. Certain built environment characteristics, including land use, transportation and buildings are modeled as independent variables. The significant influences of built environmental factors on the metro vibrancy are unraveled using the ordinary least square regression and the spatial lag model. With experiments conducted in Shenzhen, Singapore and London, this study comes up with a conclusion that spatial distributions of metro vibrancy metrics in three cities are spatially autocorrelated. The regression analysis suggests that in all the three cities, more affluent urban areas tend to have higher metro virbrancy, while the road density, land use and buildings tend to impact metro vibrancy in only one or two cities. These results demonstrate the relationship between the metro vibrancy and built environment is affected by complex urban contexts. These findings help us to understand metro vibrancy thus make proper policy to re-stimulate the important metro infrastructure in the future.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1009-5020
1993-5153
DOI:10.1080/10095020.2021.1996212