Ionospheric monitoring with the Chilean GPS eyeball during the South American total solar eclipse on 2nd July 2019

The impact of total solar eclipse of July 2, 2019 on the Ionosphere is studied using 24 Chilean GPS stations north–south of the totality path. The total solar eclipse passed through Coquimbo region from ~ 16:38 CLT (~ 20:38 UTC) to ~ 16:40 CLT (~ 20:40 UTC) and maximum eclipse was observed ~ 16:39 C...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; p. 19380
Main Authors Maurya, Ajeet K., Shrivastava, Mahesh N., Kumar, Kondapalli Niranjan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.11.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The impact of total solar eclipse of July 2, 2019 on the Ionosphere is studied using 24 Chilean GPS stations north–south of the totality path. The total solar eclipse passed through Coquimbo region from ~ 16:38 CLT (~ 20:38 UTC) to ~ 16:40 CLT (~ 20:40 UTC) and maximum eclipse was observed ~ 16:39 CLT (~ 20:39 UTC). The total electron content (TEC) derived from GPS signals shows peculiar features. At the totality stations TEC variations are small (~ 0.39 TECu), but it shows significant decrease (maximum ~ 2.24 TECu) for stations located south and increase (maximum ~ 3.89 TECu) for the stations located north of totality of the surface. The wavelet analysis of VTEC timeseries shows the presence of strong atmospheric gravity waves (AGWs) of duration ~ 30 to 60 min at the stations located north of totality. Thus, the results suggest an interplay between eclipse effect on the ionosphere plasma density and eclipse generated AGWs induced plasma density perturbation provided the peculiar features.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-75986-7