SNP detection for massively parallel whole-genome resequencing
Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-geno...
Saved in:
Published in | Genome Research Vol. 19; no. 6; pp. 1124 - 1132 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36× coverage and assembled a high-quality nonrepetitive consensus sequence for 92.25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered at 99.97% and 99.84% consistency, respectively. At a low sequencing depth, we used prior probability of dbSNP alleles and were able to improve coverage of the dbSNP sites significantly as compared to that obtained using a nonimputation model. Our analyses demonstrate that our method has a very low false call rate at any sequencing depth and excellent genome coverage at a high sequencing depth. |
---|---|
AbstractList | Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36x coverage and assembled a high-quality nonrepetitive consensus sequence for 92.25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered at 99.97% and 99.84% consistency, respectively. At a low sequencing depth, we used prior probability of dbSNP alleles and were able to improve coverage of the dbSNP sites significantly as compared to that obtained using a nonimputation model. Our analyses demonstrate that our method has a very low false call rate at any sequencing depth and excellent genome coverage at a high sequencing depth.Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36x coverage and assembled a high-quality nonrepetitive consensus sequence for 92.25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered at 99.97% and 99.84% consistency, respectively. At a low sequencing depth, we used prior probability of dbSNP alleles and were able to improve coverage of the dbSNP sites significantly as compared to that obtained using a nonimputation model. Our analyses demonstrate that our method has a very low false call rate at any sequencing depth and excellent genome coverage at a high sequencing depth. Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36× coverage and assembled a high-quality nonrepetitive consensus sequence for 92.25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered at 99.97% and 99.84% consistency, respectively. At a low sequencing depth, we used prior probability of dbSNP alleles and were able to improve coverage of the dbSNP sites significantly as compared to that obtained using a nonimputation model. Our analyses demonstrate that our method has a very low false call rate at any sequencing depth and excellent genome coverage at a high sequencing depth. Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36x coverage and assembled a high-quality nonrepetitive consensus sequence for 92.25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered at 99.97% and 99.84% consistency, respectively. At a low sequencing depth, we used prior probability of dbSNP alleles and were able to improve coverage of the dbSNP sites significantly as compared to that obtained using a nonimputation model. Our analyses demonstrate that our method has a very low false call rate at any sequencing depth and excellent genome coverage at a high sequencing depth. |
Author | Wang, Jian Fang, Xiaodong Kristiansen, Karsten Li, Ruiqiang Wang, Jun Li, Yingrui Yang, Huanming |
AuthorAffiliation | 1 Beijing Genomics Institute at Shenzhen, Shenzhen 518000, China 2 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M DK-5230, Denmark |
AuthorAffiliation_xml | – name: 2 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M DK-5230, Denmark – name: 1 Beijing Genomics Institute at Shenzhen, Shenzhen 518000, China |
Author_xml | – sequence: 1 givenname: Ruiqiang surname: Li fullname: Li, Ruiqiang – sequence: 2 givenname: Yingrui surname: Li fullname: Li, Yingrui – sequence: 3 givenname: Xiaodong surname: Fang fullname: Fang, Xiaodong – sequence: 4 givenname: Huanming surname: Yang fullname: Yang, Huanming – sequence: 5 givenname: Jian surname: Wang fullname: Wang, Jian – sequence: 6 givenname: Karsten surname: Kristiansen fullname: Kristiansen, Karsten – sequence: 7 givenname: Jun surname: Wang fullname: Wang, Jun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19420381$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctLxDAQxoMovo9epSdvXSdN2qYXQcQXiAp6D2l2WiNpsibdFf97s6xv8JQh85vv-5jZIevOOyTkgMKEUqDHfZiAEEDZhIJYI9u05E1e8rpeT3Xq5A2UdIvsxPgMAIwLsUm2aMMLYIJuk5OH2_tsiiPq0XiXdT5kg4rRLNC-ZTMVlLVos9cnbzHv0fkBs4ARX-botHH9HtnolI24__HukoeL88ezq_zm7vL67PQm17ykY55cWS00rVA1oi2gKSlMC604ImecdVXV1gAcVCdK3lYNdoK3FKq6AuiA7ZKTleps3g441ejGFEzOghlUeJNeGfm748yT7P1CFlXDuSiTwNGHQPApehzlYKJGa5VDP4-yqhmIuliChz-dviw-F5aAfAXo4GMM2H0jIJcHkX2Qq4OkH5F49ofXZlTLXaegxv4z9Q5pg453 |
CitedBy_id | crossref_primary_10_3389_fpls_2016_00667 crossref_primary_10_3390_ijms21010368 crossref_primary_10_1101_gr_160788_113 crossref_primary_10_1111_cla_12012 crossref_primary_10_3389_fmicb_2016_01861 crossref_primary_10_1371_journal_pone_0122524 crossref_primary_10_1017_thg_2015_34 crossref_primary_10_1186_1471_2105_12_231 crossref_primary_10_1016_j_ajhg_2016_07_003 crossref_primary_10_1007_s11427_017_9246_4 crossref_primary_10_1534_genetics_114_161414 crossref_primary_10_3389_fmicb_2023_1259241 crossref_primary_10_1186_s12864_018_5010_5 crossref_primary_10_1007_s00344_017_9768_5 crossref_primary_10_1111_cge_12573 crossref_primary_10_1186_1746_4811_8_34 crossref_primary_10_1126_science_1217876 crossref_primary_10_1007_s00414_015_1313_0 crossref_primary_10_1038_srep21356 crossref_primary_10_1093_molbev_mst103 crossref_primary_10_1186_s12863_016_0333_1 crossref_primary_10_1371_journal_pone_0054743 crossref_primary_10_1186_s12918_016_0300_5 crossref_primary_10_1101_gr_124107_111 crossref_primary_10_3389_fpls_2022_1098605 crossref_primary_10_1088_1742_6596_835_1_012002 crossref_primary_10_1186_1939_8433_5_18 crossref_primary_10_1093_bioinformatics_btu591 crossref_primary_10_1093_molbev_msad008 crossref_primary_10_1038_s41587_018_0003_0 crossref_primary_10_1042_BSR20150131 crossref_primary_10_1186_s12881_018_0615_8 crossref_primary_10_1038_srep09236 crossref_primary_10_1089_cmb_2011_0027 crossref_primary_10_1099_mgen_0_000907 crossref_primary_10_1186_s12864_017_4143_2 crossref_primary_10_1371_journal_pntd_0006635 crossref_primary_10_1038_srep23642 crossref_primary_10_1016_j_btre_2021_e00689 crossref_primary_10_1080_14620316_2016_1142359 crossref_primary_10_1109_TCBB_2018_2816022 crossref_primary_10_1534_genetics_109_107557 crossref_primary_10_1016_j_cbpb_2019_110392 crossref_primary_10_1186_s12859_014_0356_4 crossref_primary_10_1111_nph_15262 crossref_primary_10_1007_s00438_023_02007_3 crossref_primary_10_1007_s10725_021_00738_0 crossref_primary_10_1371_journal_pone_0108488 crossref_primary_10_1002_0471250953_bi1111s44 crossref_primary_10_1016_j_jia_2024_06_013 crossref_primary_10_1111_jdi_12824 crossref_primary_10_1152_physiolgenomics_00113_2015 crossref_primary_10_1371_journal_pone_0065546 crossref_primary_10_1007_s00438_015_1138_z crossref_primary_10_1038_s42003_021_02864_x crossref_primary_10_1038_nrg2986 crossref_primary_10_1002_ana_24319 crossref_primary_10_1111_nph_14040 crossref_primary_10_1016_j_fsigen_2014_08_013 crossref_primary_10_1016_j_prp_2022_153760 crossref_primary_10_1016_j_jbiotec_2017_04_037 crossref_primary_10_3389_fgene_2019_00251 crossref_primary_10_1093_bib_bbp058 crossref_primary_10_1007_s11427_011_4232_4 crossref_primary_10_1093_jac_dku019 crossref_primary_10_3389_fpls_2020_569958 crossref_primary_10_1111_j_1567_1364_2011_00777_x crossref_primary_10_1159_000488029 crossref_primary_10_1101_gr_096388_109 crossref_primary_10_1128_EC_00312_12 crossref_primary_10_1038_jid_2011_62 crossref_primary_10_1186_1476_4598_13_19 crossref_primary_10_1186_s12859_016_1216_1 crossref_primary_10_3389_fmicb_2017_01238 crossref_primary_10_1093_bib_bbq016 crossref_primary_10_1097_ICO_0000000000003209 crossref_primary_10_1097_MD_0000000000007010 crossref_primary_10_3390_genes12091448 crossref_primary_10_1099_ijsem_0_003618 crossref_primary_10_3390_ani12233353 crossref_primary_10_1038_ncomms6315 crossref_primary_10_1093_gigascience_giy113 crossref_primary_10_1186_1471_2164_12_116 crossref_primary_10_1371_journal_pone_0064356 crossref_primary_10_1016_j_gene_2017_07_009 crossref_primary_10_1371_journal_pone_0063026 crossref_primary_10_1007_s00122_016_2758_3 crossref_primary_10_1016_j_future_2016_06_008 crossref_primary_10_1093_bib_bbz060 crossref_primary_10_1038_nrg2844 crossref_primary_10_3390_plants9101355 crossref_primary_10_1186_gb_2011_12_11_r114 crossref_primary_10_3892_mmr_2017_6887 crossref_primary_10_1002_jcla_23769 crossref_primary_10_1371_journal_pone_0098144 crossref_primary_10_1093_bioinformatics_btw212 crossref_primary_10_1371_journal_pone_0029500 crossref_primary_10_1109_TCBB_2016_2535251 crossref_primary_10_3201_eid2302_160297 crossref_primary_10_1016_j_csbj_2022_07_016 crossref_primary_10_1093_gigascience_gix039 crossref_primary_10_1186_s12864_017_3594_9 crossref_primary_10_1016_j_micres_2014_09_001 crossref_primary_10_1186_s40246_015_0053_z crossref_primary_10_1016_j_fsi_2015_12_029 crossref_primary_10_1007_s00438_014_0979_1 crossref_primary_10_1038_ncomms7648 crossref_primary_10_1038_ng_2801 crossref_primary_10_1007_s13353_011_0068_7 crossref_primary_10_1016_j_canlet_2012_11_025 crossref_primary_10_1186_s13059_014_0415_1 crossref_primary_10_1111_tpj_12370 crossref_primary_10_1016_j_jmoldx_2013_09_003 crossref_primary_10_1186_1471_2164_13_S2_S6 crossref_primary_10_1016_j_micpath_2022_105389 crossref_primary_10_1093_bioinformatics_btu067 crossref_primary_10_1038_ng_680 crossref_primary_10_1007_s13721_016_0135_4 crossref_primary_10_1016_j_aquaculture_2021_737535 crossref_primary_10_1186_1471_2164_15_1163 crossref_primary_10_1186_s12864_015_2242_5 crossref_primary_10_1371_journal_pone_0164469 crossref_primary_10_3389_fphys_2022_884925 crossref_primary_10_1186_s12864_017_3812_5 crossref_primary_10_1002_bdr2_1146 crossref_primary_10_1371_journal_pone_0143765 crossref_primary_10_1186_1471_2164_12_382 crossref_primary_10_1038_ncomms6897 crossref_primary_10_1038_jhg_2013_72 crossref_primary_10_1186_s12864_017_3738_y crossref_primary_10_1371_journal_pone_0040294 crossref_primary_10_18632_aging_102654 crossref_primary_10_1021_acs_jnatprod_7b00859 crossref_primary_10_1038_ncomms3138 crossref_primary_10_1093_bioinformatics_btp611 crossref_primary_10_1186_s13071_016_1436_2 crossref_primary_10_1007_s13580_021_00414_2 crossref_primary_10_1038_s41598_022_09433_0 crossref_primary_10_2135_cropsci2016_02_0137 crossref_primary_10_1155_2019_8705989 crossref_primary_10_1016_j_aquaculture_2019_04_013 crossref_primary_10_1186_1756_0500_7_698 crossref_primary_10_1038_srep06036 crossref_primary_10_1038_ng_684 crossref_primary_10_1097_JTO_0b013e3182a4dd8e crossref_primary_10_1038_s41587_023_02057_3 crossref_primary_10_1002_humu_22472 crossref_primary_10_1038_ncomms5331 crossref_primary_10_1093_gigascience_gix059 crossref_primary_10_2353_jmoldx_2010_100043 crossref_primary_10_3389_fgene_2021_758366 crossref_primary_10_3892_mmr_2019_10058 crossref_primary_10_1038_ng_2827 crossref_primary_10_1101_gr_117259_110 crossref_primary_10_1186_2047_217X_3_27 crossref_primary_10_1007_s00216_016_9536_6 crossref_primary_10_1016_j_gene_2015_10_045 crossref_primary_10_1038_jid_2013_198 crossref_primary_10_1084_jem_20122842 crossref_primary_10_1007_s12539_015_0278_5 crossref_primary_10_1007_s13258_019_00864_0 crossref_primary_10_1021_acssensors_7b00667 crossref_primary_10_1016_j_jid_2019_03_1157 crossref_primary_10_1016_j_ymben_2020_04_009 crossref_primary_10_1073_pnas_2201113119 crossref_primary_10_1016_j_gene_2012_03_029 crossref_primary_10_1111_tpj_12569 crossref_primary_10_1186_gb_2011_12_6_r55 crossref_primary_10_1002_humu_22825 crossref_primary_10_1186_1471_2164_14_601 crossref_primary_10_1016_j_ijporl_2016_08_026 crossref_primary_10_1101_gr_225672_117 crossref_primary_10_1128_genomeA_00236_16 crossref_primary_10_1002_ijch_201200090 crossref_primary_10_1021_acs_analchem_1c01012 crossref_primary_10_1016_j_talanta_2019_03_106 crossref_primary_10_1111_pbi_12985 crossref_primary_10_1146_annurev_genom_090711_163814 crossref_primary_10_1016_j_bse_2019_02_001 crossref_primary_10_1002_slct_201702341 crossref_primary_10_1136_jmedgenet_2014_102961 crossref_primary_10_3389_fgene_2020_566314 crossref_primary_10_1007_s42161_019_00401_8 crossref_primary_10_1016_j_pestbp_2015_04_007 crossref_primary_10_15252_embj_2019103256 crossref_primary_10_1111_jwas_12303 crossref_primary_10_1093_bfgp_elu024 crossref_primary_10_3389_fpls_2017_01223 crossref_primary_10_4218_etrij_15_2314_0144 crossref_primary_10_1016_j_jgg_2011_02_003 crossref_primary_10_1038_s41598_017_10439_2 crossref_primary_10_1093_dnares_dsv019 crossref_primary_10_1371_journal_pone_0033673 crossref_primary_10_1016_j_scienta_2024_113816 crossref_primary_10_1093_dnares_dsu047 crossref_primary_10_1038_cr_2012_30 crossref_primary_10_1371_journal_pcbi_1002417 crossref_primary_10_2174_1386207323666200317121136 crossref_primary_10_1186_gb_2013_14_3_r29 crossref_primary_10_1007_s10661_023_12228_z crossref_primary_10_1016_j_cell_2012_02_028 crossref_primary_10_1073_pnas_1306579110 crossref_primary_10_1155_2012_831460 crossref_primary_10_1093_nargab_lqad038 crossref_primary_10_1016_j_cell_2012_02_025 crossref_primary_10_1093_bioinformatics_btx133 crossref_primary_10_1016_j_snb_2019_126819 crossref_primary_10_1038_ncomms2256 crossref_primary_10_1126_science_1176620 crossref_primary_10_3390_ijms20040979 crossref_primary_10_1038_nbt_1992 crossref_primary_10_3389_fpls_2016_00496 crossref_primary_10_1186_s12864_017_3980_3 crossref_primary_10_1093_bib_bbw096 crossref_primary_10_1186_1471_2105_13_221 crossref_primary_10_1186_1471_2105_14_S7_S11 crossref_primary_10_1111_pbi_12645 crossref_primary_10_1186_1471_2105_14_274 crossref_primary_10_1111_mec_12693 crossref_primary_10_3389_fmicb_2018_01975 crossref_primary_10_1007_s10753_020_01334_6 crossref_primary_10_1186_s12864_015_1878_5 crossref_primary_10_1371_journal_pcbi_1003853 crossref_primary_10_1101_gr_114744_110 crossref_primary_10_1111_1755_0998_12147 crossref_primary_10_1016_j_cell_2013_11_040 crossref_primary_10_1097_MD_0000000000016738 crossref_primary_10_1007_s11032_019_0946_y crossref_primary_10_1089_cmb_2015_0215 crossref_primary_10_1186_1471_2105_15_S9_S12 crossref_primary_10_1080_14620316_2021_1953405 crossref_primary_10_1182_blood_2013_12_546309 crossref_primary_10_2459_JCM_0000000000000589 crossref_primary_10_1093_dnares_dsw017 crossref_primary_10_1101_gr_112326_110 crossref_primary_10_1371_journal_pone_0065050 crossref_primary_10_1016_j_ajhg_2011_05_029 crossref_primary_10_1007_s13205_021_02949_8 crossref_primary_10_1016_j_ins_2015_01_011 crossref_primary_10_1101_gr_097261_109 crossref_primary_10_1186_1471_2105_14_289 crossref_primary_10_1002_mgg3_1634 crossref_primary_10_1016_j_gene_2012_07_090 crossref_primary_10_1089_omi_2012_0001 crossref_primary_10_1038_jhg_2014_114 crossref_primary_10_1186_gb_2011_12_10_r107 crossref_primary_10_7550_rmb_43498 crossref_primary_10_1093_bioinformatics_btq526 crossref_primary_10_1111_ahg_12114 crossref_primary_10_1038_ncomms3320 crossref_primary_10_4137_EBO_S10194 crossref_primary_10_1089_zeb_2015_1154 crossref_primary_10_1155_2012_318232 crossref_primary_10_1007_s12020_014_0368_x crossref_primary_10_3168_jds_2017_13534 crossref_primary_10_4103_0301_4738_185597 crossref_primary_10_1142_S0219720013300025 crossref_primary_10_1109_TSP_2014_2333564 crossref_primary_10_1007_s00439_014_1460_2 crossref_primary_10_1371_journal_pone_0076059 crossref_primary_10_3390_microarrays4040570 crossref_primary_10_1371_journal_pone_0144927 crossref_primary_10_1186_1471_2105_12_267 crossref_primary_10_1186_s12859_021_04058_y crossref_primary_10_1186_s12859_014_0418_7 crossref_primary_10_1186_gb_2009_10_11_r134 crossref_primary_10_3389_fgene_2015_00288 crossref_primary_10_3390_ijms21030863 crossref_primary_10_1111_pbi_12825 crossref_primary_10_3389_fgene_2019_00116 crossref_primary_10_1002_cpe_2925 crossref_primary_10_1111_cts_13911 crossref_primary_10_1111_jipb_12355 crossref_primary_10_1186_1756_0500_7_747 crossref_primary_10_1186_1471_2105_15_S11_S6 crossref_primary_10_1186_1471_2105_14_184 crossref_primary_10_1097_MD_0000000000004963 crossref_primary_10_3892_ijmm_2017_3308 crossref_primary_10_1371_journal_pgen_1002326 crossref_primary_10_1007_s13277_014_2003_0 crossref_primary_10_1186_1471_2148_10_81 crossref_primary_10_1093_bioinformatics_bty145 crossref_primary_10_1038_aja_2011_51 crossref_primary_10_1186_s12864_015_1887_4 crossref_primary_10_23922_jarc_2024_030 crossref_primary_10_3390_ijms17040501 crossref_primary_10_1371_journal_pone_0090346 crossref_primary_10_3389_fpls_2017_00266 crossref_primary_10_1016_j_fsi_2015_07_013 crossref_primary_10_1093_molbev_msy017 crossref_primary_10_1099_ijsem_0_003362 crossref_primary_10_1111_1556_4029_13794 crossref_primary_10_1534_genetics_115_179077 crossref_primary_10_3389_fphys_2022_926885 crossref_primary_10_1007_s12686_017_0900_4 crossref_primary_10_1371_journal_pone_0077022 crossref_primary_10_1093_bfgp_elx006 crossref_primary_10_1371_journal_pone_0090343 crossref_primary_10_1186_1471_2105_12_S10_S21 crossref_primary_10_1007_s12038_017_9686_5 crossref_primary_10_1016_j_gene_2017_05_053 crossref_primary_10_1371_journal_pgen_1003888 crossref_primary_10_1371_journal_pgen_1003645 crossref_primary_10_1093_bib_bby106 crossref_primary_10_1021_acs_jafc_0c00078 crossref_primary_10_1007_s00438_020_01739_w crossref_primary_10_1093_bioinformatics_btz102 crossref_primary_10_1016_j_anireprosci_2018_08_041 crossref_primary_10_1093_bioinformatics_btr629 crossref_primary_10_1016_j_resmic_2013_02_005 crossref_primary_10_1016_j_ymgme_2012_08_020 crossref_primary_10_1038_nmeth_2023 crossref_primary_10_1590_1678_4685_gmb_2016_0321 crossref_primary_10_1038_ncomms3673 crossref_primary_10_1038_ng_715 crossref_primary_10_1007_s11738_019_2941_7 crossref_primary_10_1016_j_jneuroim_2011_12_017 crossref_primary_10_1007_s11032_017_0632_x crossref_primary_10_1016_j_biocel_2017_09_018 crossref_primary_10_1038_ng_3199 crossref_primary_10_1371_journal_pone_0252181 crossref_primary_10_1007_s13353_015_0292_7 crossref_primary_10_1016_j_bbrc_2012_08_101 crossref_primary_10_1111_mec_16207 crossref_primary_10_1093_hmg_ddu442 crossref_primary_10_5812_hepatmon_80767 crossref_primary_10_1016_j_ajhg_2009_12_007 crossref_primary_10_1186_1471_2164_13_403 crossref_primary_10_1038_s41598_019_40210_8 crossref_primary_10_3390_ijms20010152 crossref_primary_10_1111_mec_14264 crossref_primary_10_1371_journal_pone_0023455 crossref_primary_10_1186_1471_2148_13_165 crossref_primary_10_1111_1755_0998_12553 crossref_primary_10_1016_j_diagmicrobio_2020_115025 crossref_primary_10_1016_j_imu_2022_101024 crossref_primary_10_1186_s12864_018_5127_6 crossref_primary_10_1016_j_gene_2013_04_081 crossref_primary_10_3892_or_2015_4080 crossref_primary_10_1093_bfgp_elr046 crossref_primary_10_1186_s13059_018_1452_y crossref_primary_10_1371_journal_pone_0100060 crossref_primary_10_1093_bib_bbv062 crossref_primary_10_1371_journal_pone_0025509 crossref_primary_10_3389_fpls_2016_02055 crossref_primary_10_1073_pnas_1323011111 crossref_primary_10_1186_s12859_016_1279_z crossref_primary_10_1002_mgg3_1660 crossref_primary_10_3390_ijms21030780 crossref_primary_10_3390_agronomy9080430 crossref_primary_10_1371_journal_pone_0159385 crossref_primary_10_1186_1471_2164_14_579 crossref_primary_10_1016_j_gpb_2016_11_001 crossref_primary_10_1016_j_fsi_2017_11_024 crossref_primary_10_1007_s13258_019_00787_w crossref_primary_10_1186_1479_7364_8_14 crossref_primary_10_3892_etm_2016_3797 crossref_primary_10_1038_s43247_023_01066_z crossref_primary_10_1111_ceo_12391 crossref_primary_10_1038_onc_2016_172 crossref_primary_10_1242_bio_016295 crossref_primary_10_1093_jisesa_ieac014 crossref_primary_10_1186_s12864_018_4610_4 crossref_primary_10_1371_journal_pone_0114241 crossref_primary_10_1093_bioinformatics_bty183 crossref_primary_10_3389_fpls_2018_01161 crossref_primary_10_1111_1755_0998_13744 crossref_primary_10_1371_journal_pone_0128659 crossref_primary_10_1038_ng_806 crossref_primary_10_1186_gm432 crossref_primary_10_1186_1471_2164_14_302 crossref_primary_10_1016_j_snb_2021_131309 crossref_primary_10_1186_1471_2164_14_425 crossref_primary_10_3389_fpls_2019_00718 crossref_primary_10_1371_journal_pone_0255761 crossref_primary_10_1111_pbr_12174 crossref_primary_10_1186_1471_2164_15_469 crossref_primary_10_1186_1471_2164_13_S7_S6 crossref_primary_10_1038_ng_921 crossref_primary_10_1186_1471_2164_15_589 crossref_primary_10_1186_s12864_015_1534_0 crossref_primary_10_1093_bioinformatics_bty059 crossref_primary_10_1270_jsbbs_18023 crossref_primary_10_3892_ijmm_2014_1797 crossref_primary_10_1007_s11033_022_07298_0 crossref_primary_10_1038_nature08696 crossref_primary_10_1093_jxb_erw057 crossref_primary_10_1128_MRA_00471_19 crossref_primary_10_1038_s41598_020_58984_7 crossref_primary_10_1371_journal_pone_0060881 crossref_primary_10_1016_j_hpj_2016_11_003 crossref_primary_10_1186_gb_2012_13_7_r61 crossref_primary_10_1016_j_cbd_2014_11_001 crossref_primary_10_1007_s00438_013_0807_z crossref_primary_10_1038_nbt0710_691 crossref_primary_10_1093_bioinformatics_btr665 crossref_primary_10_1186_gb_2011_12_9_r95 crossref_primary_10_1016_j_ygeno_2018_07_001 crossref_primary_10_1038_ng_3036 crossref_primary_10_1080_17429145_2017_1392627 crossref_primary_10_1038_nbt_2195 crossref_primary_10_1186_1471_2164_15_571 crossref_primary_10_1186_s12879_019_4330_7 crossref_primary_10_1016_j_cell_2014_03_054 crossref_primary_10_1007_s12561_013_9084_y crossref_primary_10_1007_s41745_020_00189_y crossref_primary_10_1007_s11295_014_0831_0 crossref_primary_10_1038_ncomms3832 crossref_primary_10_1371_journal_pone_0080046 crossref_primary_10_1016_j_aquaculture_2025_742119 crossref_primary_10_1093_gbe_evu242 crossref_primary_10_1016_j_taap_2013_04_007 crossref_primary_10_3109_13816810_2014_886269 crossref_primary_10_2217_epi_2019_0023 crossref_primary_10_1186_1471_2164_14_887 crossref_primary_10_1242_dmm_018291 crossref_primary_10_1371_journal_pone_0072417 crossref_primary_10_1098_rsos_172054 crossref_primary_10_2174_0126664844274727231218061037 crossref_primary_10_1128_JCM_00535_13 crossref_primary_10_3390_bdcc7020068 crossref_primary_10_1016_j_jaci_2015_02_022 crossref_primary_10_1038_s41467_019_12493_y crossref_primary_10_1093_bioinformatics_bts549 crossref_primary_10_1186_1475_2875_12_287 crossref_primary_10_1038_srep00055 crossref_primary_10_1371_journal_pone_0185237 crossref_primary_10_1007_s00122_019_03440_y crossref_primary_10_18632_oncotarget_17052 crossref_primary_10_1111_nph_13695 crossref_primary_10_1097_IM9_0000000000000109 crossref_primary_10_1002_0471250953_bi1504s44 crossref_primary_10_1007_s00439_012_1213_z crossref_primary_10_1093_femsyr_foy100 crossref_primary_10_1093_nar_gku375 crossref_primary_10_1534_g3_116_029397 crossref_primary_10_1038_tpj_2014_70 crossref_primary_10_5598_imafungus_2018_09_02_01 crossref_primary_10_1270_jsbbs_63_21 crossref_primary_10_1093_bioinformatics_btt503 crossref_primary_10_1016_j_ygeno_2012_02_005 crossref_primary_10_1111_pbi_14298 crossref_primary_10_1038_nbt_4235 crossref_primary_10_1007_s12561_012_9067_4 crossref_primary_10_1186_s12934_023_02142_x crossref_primary_10_1186_1471_2164_15_S1_S11 crossref_primary_10_3892_mmr_2016_5014 crossref_primary_10_1016_j_ygeno_2014_06_005 crossref_primary_10_1111_tpj_16389 crossref_primary_10_1128_AEM_01458_21 crossref_primary_10_1186_1471_2105_14_225 crossref_primary_10_1016_j_cj_2018_11_010 crossref_primary_10_1111_1755_0998_12333 crossref_primary_10_1371_journal_pone_0156040 crossref_primary_10_1371_journal_pone_0252207 crossref_primary_10_1534_genetics_113_153049 crossref_primary_10_1534_genetics_113_154138 crossref_primary_10_1038_nrg3117 crossref_primary_10_1093_bfgp_elt040 crossref_primary_10_3390_genes3030545 crossref_primary_10_1155_2013_185679 crossref_primary_10_1007_s11032_017_0729_2 crossref_primary_10_1038_srep13115 crossref_primary_10_1093_gigascience_giac032 crossref_primary_10_1534_g3_117_039008 crossref_primary_10_1093_nar_gks280 crossref_primary_10_1214_13_AOAS660 crossref_primary_10_1186_gb_2010_11_9_r91 crossref_primary_10_3390_genes10110846 crossref_primary_10_1038_srep16507 crossref_primary_10_1186_s12870_015_0463_z crossref_primary_10_1016_j_ympev_2019_106534 crossref_primary_10_1126_science_aao1887 crossref_primary_10_1371_journal_pone_0151826 crossref_primary_10_3390_genes1010038 crossref_primary_10_1093_bib_bbs088 crossref_primary_10_1038_ncomms3708 crossref_primary_10_1093_bioinformatics_btr344 crossref_primary_10_1038_modpathol_2012_121 crossref_primary_10_1158_1940_6207_CAPR_14_0108 crossref_primary_10_1093_nar_gks299 crossref_primary_10_1186_s12864_019_5533_4 crossref_primary_10_3389_fpls_2017_00546 crossref_primary_10_1002_celc_201300221 crossref_primary_10_1038_srep11042 crossref_primary_10_1371_journal_pone_0101261 crossref_primary_10_1038_ng_3117 crossref_primary_10_1371_journal_pone_0125571 crossref_primary_10_1371_journal_pone_0096855 crossref_primary_10_1038_s41588_019_0522_8 crossref_primary_10_1101_gr_113084_110 crossref_primary_10_1186_1471_2156_15_13 crossref_primary_10_1007_s00125_012_2756_1 crossref_primary_10_1007_s00122_018_3056_z crossref_primary_10_1007_s10548_021_00885_7 crossref_primary_10_1038_jid_2013_49 crossref_primary_10_1093_nar_gkv135 crossref_primary_10_1371_journal_pone_0021791 crossref_primary_10_3892_br_2021_1492 crossref_primary_10_4103_0366_6999_178966 crossref_primary_10_1038_ng_1008 crossref_primary_10_1038_srep38636 crossref_primary_10_1016_j_rbmo_2018_03_009 crossref_primary_10_52361_fsbh_2022_2_e32 crossref_primary_10_1007_s10811_018_1604_1 crossref_primary_10_1016_j_neurobiolaging_2013_04_029 crossref_primary_10_1128_genomeA_00104_17 crossref_primary_10_1371_journal_pone_0030952 crossref_primary_10_2135_cropsci2012_02_0065 crossref_primary_10_1016_j_meegid_2009_11_013 crossref_primary_10_1002_gepi_20501 crossref_primary_10_7554_eLife_81258 crossref_primary_10_1002_0471250953_bi1503s39 crossref_primary_10_1016_j_cca_2017_06_015 crossref_primary_10_1186_s13059_014_0557_1 crossref_primary_10_1016_j_fsigss_2015_10_002 crossref_primary_10_1093_biomet_asv012 crossref_primary_10_1371_journal_pone_0157362 crossref_primary_10_1111_mec_14090 crossref_primary_10_1186_gb_2010_11_11_r116 crossref_primary_10_1128_mSphere_00937_20 crossref_primary_10_1101_gr_157388_113 crossref_primary_10_1371_journal_pgen_1006455 crossref_primary_10_1371_journal_pone_0072686 crossref_primary_10_1109_TCBB_2018_2858267 crossref_primary_10_1186_1471_2105_12_S1_S53 crossref_primary_10_3390_md17090504 crossref_primary_10_1007_s10681_011_0574_z crossref_primary_10_1186_1471_2164_13_588 crossref_primary_10_1038_nbt_2050 crossref_primary_10_1093_bioinformatics_bts001 crossref_primary_10_32604_phyton_2021_014880 crossref_primary_10_1111_imb_12216 crossref_primary_10_1016_j_scienta_2019_108907 crossref_primary_10_1186_2047_2501_1_6 crossref_primary_10_1016_j_heliyon_2019_e02530 crossref_primary_10_1016_j_ejmg_2015_11_001 crossref_primary_10_1016_j_ymben_2016_03_003 crossref_primary_10_1111_petr_13143 crossref_primary_10_1016_j_csbj_2017_07_004 crossref_primary_10_1186_gb_2011_12_9_227 crossref_primary_10_1186_s12864_018_4952_y crossref_primary_10_1016_j_dit_2013_07_005 crossref_primary_10_1002_cncr_30337 crossref_primary_10_1016_j_apsb_2017_07_005 crossref_primary_10_1093_hmg_ddu747 crossref_primary_10_3892_mmr_2014_3135 crossref_primary_10_1016_j_dci_2018_09_003 crossref_primary_10_1145_3340286 crossref_primary_10_1186_1471_2350_14_107 crossref_primary_10_1371_journal_pone_0135332 crossref_primary_10_1104_pp_110_166736 crossref_primary_10_1186_gb_2014_15_2_r36 crossref_primary_10_1371_journal_pone_0115740 crossref_primary_10_1038_srep06216 crossref_primary_10_1038_ncomms6188 crossref_primary_10_1002_jgm_3191 crossref_primary_10_1371_journal_pone_0087940 crossref_primary_10_1038_srep20758 crossref_primary_10_3389_fpls_2022_860034 crossref_primary_10_1186_s12859_018_2579_2 crossref_primary_10_1371_journal_pone_0075619 crossref_primary_10_1093_nar_gku392 crossref_primary_10_1038_ng_2588 crossref_primary_10_1093_bioinformatics_btv507 crossref_primary_10_1371_journal_pgen_1005228 crossref_primary_10_1371_journal_pone_0092298 crossref_primary_10_1007_s11427_017_9161_4 crossref_primary_10_1038_nature13408 crossref_primary_10_1007_s10529_016_2187_z crossref_primary_10_1016_j_virusres_2016_12_008 crossref_primary_10_1038_ng_2343 crossref_primary_10_1111_imb_12234 crossref_primary_10_2337_db11_0985 crossref_primary_10_1016_j_cell_2017_12_019 crossref_primary_10_1155_2016_5284786 crossref_primary_10_1093_nar_gky445 crossref_primary_10_1371_journal_pone_0101754 crossref_primary_10_1016_j_neucom_2015_12_001 crossref_primary_10_1111_j_1365_294X_2011_05463_x crossref_primary_10_1534_g3_116_029660 crossref_primary_10_1038_s41397_021_00245_5 crossref_primary_10_1182_blood_2014_08_596445 crossref_primary_10_1530_EC_18_0326 crossref_primary_10_1371_journal_pone_0094046 crossref_primary_10_1371_journal_pone_0075402 crossref_primary_10_1016_j_dci_2014_01_022 crossref_primary_10_1104_pp_110_158949 crossref_primary_10_1186_1471_2164_13_692 crossref_primary_10_7717_peerj_3303 crossref_primary_10_1186_1471_2156_14_98 crossref_primary_10_3390_medsci2020098 crossref_primary_10_1093_annonc_mdq664 crossref_primary_10_3390_mi11010039 crossref_primary_10_1002_gepi_21636 crossref_primary_10_1371_journal_pone_0161928 crossref_primary_10_1186_s12859_016_0879_y crossref_primary_10_1038_ng_2409 crossref_primary_10_1186_s12862_014_0250_8 crossref_primary_10_1371_journal_pone_0121351 crossref_primary_10_1371_journal_pgen_1009762 crossref_primary_10_1111_mec_16471 crossref_primary_10_1016_j_cub_2012_07_042 crossref_primary_10_1186_s12870_018_1429_8 crossref_primary_10_1038_ng_2524 crossref_primary_10_1111_j_1399_0004_2011_01714_x crossref_primary_10_1016_j_cj_2017_12_002 crossref_primary_10_1016_j_jaci_2014_04_042 crossref_primary_10_1155_2015_456479 crossref_primary_10_1371_journal_pone_0136995 crossref_primary_10_1155_2015_923491 crossref_primary_10_1093_bib_bbab070 crossref_primary_10_1101_gr_100040_109 crossref_primary_10_1002_cam4_1717 crossref_primary_10_1016_j_jbi_2014_10_001 crossref_primary_10_1093_bioinformatics_bts047 crossref_primary_10_1053_j_seminoncol_2015_09_004 crossref_primary_10_1111_pbi_13002 crossref_primary_10_1177_0269881113499829 crossref_primary_10_3390_ijms160921791 crossref_primary_10_1002_gepi_21747 crossref_primary_10_1007_s00438_015_1127_2 crossref_primary_10_1080_01490451_2014_991812 crossref_primary_10_1186_1480_9222_15_4 crossref_primary_10_1186_s12862_017_0929_8 crossref_primary_10_1002_cbin_11912 crossref_primary_10_1038_nature11280 crossref_primary_10_1007_s12686_023_01300_y crossref_primary_10_1186_1471_2164_14_101 crossref_primary_10_1186_s12864_015_1609_y crossref_primary_10_1007_s12686_016_0630_z crossref_primary_10_1038_ng_2313 crossref_primary_10_1093_bioinformatics_btw409 crossref_primary_10_1186_1471_2164_13_77 crossref_primary_10_1016_j_jbiotec_2017_02_013 crossref_primary_10_1128_genomeA_00087_16 crossref_primary_10_3732_ajb_1100335 crossref_primary_10_1038_nbt_2122 crossref_primary_10_1109_TPDS_2018_2839578 crossref_primary_10_1002_humu_22075 crossref_primary_10_1073_pnas_1420949112 crossref_primary_10_1038_s42003_021_01724_y crossref_primary_10_1093_molbev_msac016 crossref_primary_10_1099_jmm_0_001756 crossref_primary_10_1101_gad_1864110 crossref_primary_10_1128_MRA_01480_19 crossref_primary_10_1186_s12859_016_1192_5 crossref_primary_10_1038_srep14283 crossref_primary_10_1136_jmedgenet_2017_105145 crossref_primary_10_1002_pd_5298 crossref_primary_10_1186_s12915_018_0572_x crossref_primary_10_7717_peerj_2664 crossref_primary_10_1186_s12864_017_3854_8 crossref_primary_10_1038_nbt_3200 crossref_primary_10_1126_science_1225385 crossref_primary_10_1007_s00438_015_1017_7 crossref_primary_10_1186_1756_0500_5_338 crossref_primary_10_1186_s13068_015_0415_8 crossref_primary_10_2174_1386207323666201211095018 crossref_primary_10_1007_s12041_014_0324_9 |
Cites_doi | 10.1038/nature07517 10.1038/nature04226 10.1038/70570 10.1038/nrg1325 10.1126/science.1058040 10.1101/gr.8.3.175 10.1038/35057050 10.1038/nature06258 10.1101/gr.6151507 10.1038/nmeth1109 10.1038/nrg1522 10.1038/nature03001 10.1016/j.gde.2006.10.009 10.1038/35057149 10.1038/nmeth1110 10.1093/bioinformatics/btn025 10.1038/35035083 10.1093/nar/29.1.308 10.1101/gr.287302 10.1038/nature07484 10.1038/35057062 10.1101/gr.070227.107 10.1101/gr.156901 10.1101/gr.194201 10.1371/journal.pcbi.0010053 10.1038/nmeth1111 10.1038/ng.2007.42 10.1038/nature06884 10.1101/gr.078212.108 10.1038/ng1746 10.1101/gr.2754005 |
ContentType | Journal Article |
Copyright | Copyright © 2009 by Cold Spring Harbor Laboratory Press 2009 |
Copyright_xml | – notice: Copyright © 2009 by Cold Spring Harbor Laboratory Press 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1101/gr.088013.108 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Li et al |
EISSN | 1549-5477 |
EndPage | 1132 |
ExternalDocumentID | PMC2694485 19420381 10_1101_gr_088013_108 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAFWJ AAYOK AAYXX AAZTW ABDIX ABDNZ ACGFO ACLKE ACYGS ADBBV ADNWM AEILP AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 R.V RCX RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 -DZ -~X .55 0VX 5PM 85S ABCQX ACNCT ADIYS ADXHL AETEA AFFNX H~9 L7B MVM N9A OK1 P2P TN5 UHB WH7 X7M XJT XSW YBU YHG YSK ZY4 |
ID | FETCH-LOGICAL-c451t-488378c16ea98b209510d2ca4ee4343f66b70040af854b69ef84b1067600f03 |
ISSN | 1088-9051 |
IngestDate | Thu Aug 21 14:02:23 EDT 2025 Thu Aug 07 15:02:58 EDT 2025 Thu Apr 03 07:06:11 EDT 2025 Tue Jul 01 02:20:34 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c451t-488378c16ea98b209510d2ca4ee4343f66b70040af854b69ef84b1067600f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://genome.cshlp.org/content/19/6/1124.full.pdf |
PMID | 19420381 |
PQID | 67308725 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2694485 proquest_miscellaneous_67308725 pubmed_primary_19420381 crossref_primary_10_1101_gr_088013_108 crossref_citationtrail_10_1101_gr_088013_108 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-06-01 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genome Research |
PublicationTitleAlternate | Genome Res |
PublicationYear | 2009 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111811053349000_19.6.1124.17 2021111811053349000_19.6.1124.16 2021111811053349000_19.6.1124.19 2021111811053349000_19.6.1124.18 2021111811053349000_19.6.1124.1 2021111811053349000_19.6.1124.2 2021111811053349000_19.6.1124.7 2021111811053349000_19.6.1124.31 2021111811053349000_19.6.1124.8 2021111811053349000_19.6.1124.30 2021111811053349000_19.6.1124.9 2021111811053349000_19.6.1124.11 2021111811053349000_19.6.1124.10 2021111811053349000_19.6.1124.32 2021111811053349000_19.6.1124.3 2021111811053349000_19.6.1124.13 2021111811053349000_19.6.1124.4 2021111811053349000_19.6.1124.12 2021111811053349000_19.6.1124.5 2021111811053349000_19.6.1124.15 2021111811053349000_19.6.1124.6 2021111811053349000_19.6.1124.14 2021111811053349000_19.6.1124.28 2021111811053349000_19.6.1124.27 2021111811053349000_19.6.1124.29 Shendure (2021111811053349000_19.6.1124.23) 2004; 5 2021111811053349000_19.6.1124.20 2021111811053349000_19.6.1124.22 2021111811053349000_19.6.1124.21 2021111811053349000_19.6.1124.24 2021111811053349000_19.6.1124.26 2021111811053349000_19.6.1124.25 17934468 - Nat Methods. 2007 Nov;4(11):931-6 18987735 - Nature. 2008 Nov 6;456(7218):60-5 17934469 - Nat Methods. 2007 Nov;4(11):907-9 11237013 - Nature. 2001 Feb 15;409(6822):928-33 11125122 - Nucleic Acids Res. 2001 Jan 1;29(1):308-11 17934467 - Nat Methods. 2007 Nov;4(11):903-5 18987734 - Nature. 2008 Nov 6;456(7218):53-9 17943122 - Nature. 2007 Oct 18;449(7164):851-61 11156626 - Genome Res. 2001 Jan;11(1):170-8 15716907 - Nat Rev Genet. 2005 Feb;6(2):109-18 17982454 - Nat Genet. 2007 Dec;39(12):1522-7 15143316 - Nat Rev Genet. 2004 May;5(5):335-44 11591649 - Genome Res. 2001 Oct;11(10):1725-9 16261194 - PLoS Comput Biol. 2005 Oct;1(5):e53 17416743 - Genome Res. 2007 May;17(5):659-66 11237009 - Nature. 2001 Feb 15;409(6822):853-5 18227114 - Bioinformatics. 2008 Mar 1;24(5):713-4 10581034 - Nat Genet. 1999 Dec;23(4):452-6 11181995 - Science. 2001 Feb 16;291(5507):1304-51 9521921 - Genome Res. 1998 Mar;8(3):175-85 18714091 - Genome Res. 2008 Nov;18(11):1851-8 17055251 - Curr Opin Genet Dev. 2006 Dec;16(6):545-52 11237011 - Nature. 2001 Feb 15;409(6822):860-921 18421352 - Nature. 2008 Apr 17;452(7189):872-6 9521922 - Genome Res. 1998 Mar;8(3):186-94 15496913 - Nature. 2004 Oct 21;431(7011):931-45 15741513 - Genome Res. 2005 Mar;15(3):436-42 12421754 - Genome Res. 2002 Nov;12(11):1679-86 16255080 - Nature. 2005 Oct 27;437(7063):1299-320 11029002 - Nature. 2000 Sep 28;407(6803):513-6 16493422 - Nat Genet. 2006 Mar;38(3):375-81 18212088 - Genome Res. 2008 May;18(5):763-70 |
References_xml | – ident: 2021111811053349000_19.6.1124.4 doi: 10.1038/nature07517 – ident: 2021111811053349000_19.6.1124.12 doi: 10.1038/nature04226 – ident: 2021111811053349000_19.6.1124.19 doi: 10.1038/70570 – volume: 5 start-page: 335 year: 2004 ident: 2021111811053349000_19.6.1124.23 article-title: Advanced sequencing technologies: Methods and goals publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1325 – ident: 2021111811053349000_19.6.1124.26 doi: 10.1126/science.1058040 – ident: 2021111811053349000_19.6.1124.9 doi: 10.1101/gr.8.3.175 – ident: 2021111811053349000_19.6.1124.15 doi: 10.1038/35057050 – ident: 2021111811053349000_19.6.1124.13 doi: 10.1038/nature06258 – ident: 2021111811053349000_19.6.1124.6 doi: 10.1101/gr.6151507 – ident: 2021111811053349000_19.6.1124.21 doi: 10.1038/nmeth1109 – ident: 2021111811053349000_19.6.1124.27 doi: 10.1038/nrg1522 – ident: 2021111811053349000_19.6.1124.7 doi: 10.1038/nature03001 – ident: 2021111811053349000_19.6.1124.3 doi: 10.1016/j.gde.2006.10.009 – ident: 2021111811053349000_19.6.1124.14 doi: 10.1038/35057149 – ident: 2021111811053349000_19.6.1124.22 doi: 10.1038/nmeth1110 – ident: 2021111811053349000_19.6.1124.18 doi: 10.1093/bioinformatics/btn025 – ident: 2021111811053349000_19.6.1124.2 doi: 10.1038/35035083 – ident: 2021111811053349000_19.6.1124.24 doi: 10.1093/nar/29.1.308 – ident: 2021111811053349000_19.6.1124.32 doi: 10.1101/gr.287302 – ident: 2021111811053349000_19.6.1124.28 doi: 10.1038/nature07484 – ident: 2021111811053349000_19.6.1124.16 doi: 10.1038/35057062 – ident: 2021111811053349000_19.6.1124.5 doi: 10.1101/gr.070227.107 – ident: 2021111811053349000_19.6.1124.8 doi: 10.1101/gr.156901 – ident: 2021111811053349000_19.6.1124.10 doi: 10.1101/gr.8.3.175 – ident: 2021111811053349000_19.6.1124.20 doi: 10.1101/gr.194201 – ident: 2021111811053349000_19.6.1124.31 doi: 10.1371/journal.pcbi.0010053 – ident: 2021111811053349000_19.6.1124.1 doi: 10.1038/nmeth1111 – ident: 2021111811053349000_19.6.1124.11 doi: 10.1038/ng.2007.42 – ident: 2021111811053349000_19.6.1124.30 doi: 10.1038/nature06884 – ident: 2021111811053349000_19.6.1124.17 doi: 10.1101/gr.078212.108 – ident: 2021111811053349000_19.6.1124.25 doi: 10.1038/ng1746 – ident: 2021111811053349000_19.6.1124.29 doi: 10.1101/gr.2754005 – reference: 11237013 - Nature. 2001 Feb 15;409(6822):928-33 – reference: 16261194 - PLoS Comput Biol. 2005 Oct;1(5):e53 – reference: 9521922 - Genome Res. 1998 Mar;8(3):186-94 – reference: 18421352 - Nature. 2008 Apr 17;452(7189):872-6 – reference: 11237011 - Nature. 2001 Feb 15;409(6822):860-921 – reference: 15716907 - Nat Rev Genet. 2005 Feb;6(2):109-18 – reference: 15143316 - Nat Rev Genet. 2004 May;5(5):335-44 – reference: 17416743 - Genome Res. 2007 May;17(5):659-66 – reference: 18714091 - Genome Res. 2008 Nov;18(11):1851-8 – reference: 11237009 - Nature. 2001 Feb 15;409(6822):853-5 – reference: 18227114 - Bioinformatics. 2008 Mar 1;24(5):713-4 – reference: 15496913 - Nature. 2004 Oct 21;431(7011):931-45 – reference: 10581034 - Nat Genet. 1999 Dec;23(4):452-6 – reference: 12421754 - Genome Res. 2002 Nov;12(11):1679-86 – reference: 11181995 - Science. 2001 Feb 16;291(5507):1304-51 – reference: 18987734 - Nature. 2008 Nov 6;456(7218):53-9 – reference: 18987735 - Nature. 2008 Nov 6;456(7218):60-5 – reference: 11591649 - Genome Res. 2001 Oct;11(10):1725-9 – reference: 17055251 - Curr Opin Genet Dev. 2006 Dec;16(6):545-52 – reference: 9521921 - Genome Res. 1998 Mar;8(3):175-85 – reference: 15741513 - Genome Res. 2005 Mar;15(3):436-42 – reference: 17943122 - Nature. 2007 Oct 18;449(7164):851-61 – reference: 16493422 - Nat Genet. 2006 Mar;38(3):375-81 – reference: 16255080 - Nature. 2005 Oct 27;437(7063):1299-320 – reference: 17982454 - Nat Genet. 2007 Dec;39(12):1522-7 – reference: 11156626 - Genome Res. 2001 Jan;11(1):170-8 – reference: 17934468 - Nat Methods. 2007 Nov;4(11):931-6 – reference: 11125122 - Nucleic Acids Res. 2001 Jan 1;29(1):308-11 – reference: 17934469 - Nat Methods. 2007 Nov;4(11):907-9 – reference: 17934467 - Nat Methods. 2007 Nov;4(11):903-5 – reference: 18212088 - Genome Res. 2008 May;18(5):763-70 – reference: 11029002 - Nature. 2000 Sep 28;407(6803):513-6 |
SSID | ssj0003488 ssj0006066 |
Score | 2.524347 |
Snippet | Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1124 |
SubjectTerms | Algorithms Asian Continental Ancestry Group - genetics Chromosomes, Human, X - genetics Computational Biology - methods Genetics, Population - methods Genome, Human - genetics Genotype Humans Likelihood Functions Models, Genetic Models, Statistical Polymorphism, Single Nucleotide Probability Reproducibility of Results Resource Sequence Analysis, DNA - instrumentation Sequence Analysis, DNA - methods Software |
Title | SNP detection for massively parallel whole-genome resequencing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19420381 https://www.proquest.com/docview/67308725 https://pubmed.ncbi.nlm.nih.gov/PMC2694485 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELa2qar2ErVJH5u-fKhySUmANV64VErTx6ZVo6pJpc0J2cZsV8qyCQVVza_PDGAD6VZKe0HIGBuYj5mx_XmGkFdM8sQVAsArA-4wkaaOcJVyuGJKRolKg4ry_-WIT76zT9NgOhgcdlhLZSF31eXKfSX_I1UoA7niLtl_kKxtFArgHOQLR5AwHG8k4-OjrzuJLrSyhMEF-MKgv3DKQuSYJuVs5xdmwHUwFusCU6Q03GljsRq_9GN72U5uIU2nWuv_Vs4vAEWzfukpNJGXcwuAZuJ5Ohcw0m0rnzblk1JkC9OrmWaIWjpUoxlBHTkYzKunOqMORLp6ELw41rGpmM5-tb6u8gTM8l1oHZxRZDy2hsksxl-zV5ZFWI1fXC-e5XF9O0Y7vUVu-zBiwGQW7w4_W6M8YmG9K7J5Cxtu1dvr9d53T_4Yc1ynznZ8kZP7ZL0ZRND9GhEPyEBnG2RzPxPFcvGbbtOK1lutl2yQO2_N2d0Dk9xvk7wB6FALHQrQoRY61ECHdqFDu9B5SI4_vD85mDhNKg1HscArHHj70ThUHtciCqVf-dWJrwTTGrcWp5xLzHPgijQM4PeNdBoyidEFwR9O3dEjspYtM_2EUK4CTwuRuKMkYr4vpK_TxHOF5CyM1Ngfktfm-8WqiTKPyU7O4pXSGpJtW_28Dq_yt4ovjTBi-FS4qiUyvSx_IjHRDcd-MCSPa9G0DcET4kL4kIx7QrMVMLR6_0o2_1GFWMf93SwMtm76eE_JvfaneUbWirzUz8FbLeSLCodX1waVBQ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SNP+detection+for+massively+parallel+whole-genome+resequencing&rft.jtitle=Genome+research&rft.au=Li%2C+Ruiqiang&rft.au=Li%2C+Yingrui&rft.au=Fang%2C+Xiaodong&rft.au=Yang%2C+Huanming&rft.date=2009-06-01&rft.issn=1088-9051&rft.volume=19&rft.issue=6&rft.spage=1124&rft.epage=1132&rft_id=info:doi/10.1101%2Fgr.088013.108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1101_gr_088013_108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |