SNP detection for massively parallel whole-genome resequencing

Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-geno...

Full description

Saved in:
Bibliographic Details
Published inGenome Research Vol. 19; no. 6; pp. 1124 - 1132
Main Authors Li, Ruiqiang, Li, Yingrui, Fang, Xiaodong, Yang, Huanming, Wang, Jian, Kristiansen, Karsten, Wang, Jun
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36× coverage and assembled a high-quality nonrepetitive consensus sequence for 92.25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered at 99.97% and 99.84% consistency, respectively. At a low sequencing depth, we used prior probability of dbSNP alleles and were able to improve coverage of the dbSNP sites significantly as compared to that obtained using a nonimputation model. Our analyses demonstrate that our method has a very low false call rate at any sequencing depth and excellent genome coverage at a high sequencing depth.
AbstractList Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36x coverage and assembled a high-quality nonrepetitive consensus sequence for 92.25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered at 99.97% and 99.84% consistency, respectively. At a low sequencing depth, we used prior probability of dbSNP alleles and were able to improve coverage of the dbSNP sites significantly as compared to that obtained using a nonimputation model. Our analyses demonstrate that our method has a very low false call rate at any sequencing depth and excellent genome coverage at a high sequencing depth.Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36x coverage and assembled a high-quality nonrepetitive consensus sequence for 92.25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered at 99.97% and 99.84% consistency, respectively. At a low sequencing depth, we used prior probability of dbSNP alleles and were able to improve coverage of the dbSNP sites significantly as compared to that obtained using a nonimputation model. Our analyses demonstrate that our method has a very low false call rate at any sequencing depth and excellent genome coverage at a high sequencing depth.
Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36× coverage and assembled a high-quality nonrepetitive consensus sequence for 92.25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered at 99.97% and 99.84% consistency, respectively. At a low sequencing depth, we used prior probability of dbSNP alleles and were able to improve coverage of the dbSNP sites significantly as compared to that obtained using a nonimputation model. Our analyses demonstrate that our method has a very low false call rate at any sequencing depth and excellent genome coverage at a high sequencing depth.
Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36x coverage and assembled a high-quality nonrepetitive consensus sequence for 92.25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered at 99.97% and 99.84% consistency, respectively. At a low sequencing depth, we used prior probability of dbSNP alleles and were able to improve coverage of the dbSNP sites significantly as compared to that obtained using a nonimputation model. Our analyses demonstrate that our method has a very low false call rate at any sequencing depth and excellent genome coverage at a high sequencing depth.
Author Wang, Jian
Fang, Xiaodong
Kristiansen, Karsten
Li, Ruiqiang
Wang, Jun
Li, Yingrui
Yang, Huanming
AuthorAffiliation 1 Beijing Genomics Institute at Shenzhen, Shenzhen 518000, China
2 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M DK-5230, Denmark
AuthorAffiliation_xml – name: 2 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M DK-5230, Denmark
– name: 1 Beijing Genomics Institute at Shenzhen, Shenzhen 518000, China
Author_xml – sequence: 1
  givenname: Ruiqiang
  surname: Li
  fullname: Li, Ruiqiang
– sequence: 2
  givenname: Yingrui
  surname: Li
  fullname: Li, Yingrui
– sequence: 3
  givenname: Xiaodong
  surname: Fang
  fullname: Fang, Xiaodong
– sequence: 4
  givenname: Huanming
  surname: Yang
  fullname: Yang, Huanming
– sequence: 5
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
– sequence: 6
  givenname: Karsten
  surname: Kristiansen
  fullname: Kristiansen, Karsten
– sequence: 7
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19420381$$D View this record in MEDLINE/PubMed
BookMark eNp1kctLxDAQxoMovo9epSdvXSdN2qYXQcQXiAp6D2l2WiNpsibdFf97s6xv8JQh85vv-5jZIevOOyTkgMKEUqDHfZiAEEDZhIJYI9u05E1e8rpeT3Xq5A2UdIvsxPgMAIwLsUm2aMMLYIJuk5OH2_tsiiPq0XiXdT5kg4rRLNC-ZTMVlLVos9cnbzHv0fkBs4ARX-botHH9HtnolI24__HukoeL88ezq_zm7vL67PQm17ykY55cWS00rVA1oi2gKSlMC604ImecdVXV1gAcVCdK3lYNdoK3FKq6AuiA7ZKTleps3g441ejGFEzOghlUeJNeGfm748yT7P1CFlXDuSiTwNGHQPApehzlYKJGa5VDP4-yqhmIuliChz-dviw-F5aAfAXo4GMM2H0jIJcHkX2Qq4OkH5F49ofXZlTLXaegxv4z9Q5pg453
CitedBy_id crossref_primary_10_3389_fpls_2016_00667
crossref_primary_10_3390_ijms21010368
crossref_primary_10_1101_gr_160788_113
crossref_primary_10_1111_cla_12012
crossref_primary_10_3389_fmicb_2016_01861
crossref_primary_10_1371_journal_pone_0122524
crossref_primary_10_1017_thg_2015_34
crossref_primary_10_1186_1471_2105_12_231
crossref_primary_10_1016_j_ajhg_2016_07_003
crossref_primary_10_1007_s11427_017_9246_4
crossref_primary_10_1534_genetics_114_161414
crossref_primary_10_3389_fmicb_2023_1259241
crossref_primary_10_1186_s12864_018_5010_5
crossref_primary_10_1007_s00344_017_9768_5
crossref_primary_10_1111_cge_12573
crossref_primary_10_1186_1746_4811_8_34
crossref_primary_10_1126_science_1217876
crossref_primary_10_1007_s00414_015_1313_0
crossref_primary_10_1038_srep21356
crossref_primary_10_1093_molbev_mst103
crossref_primary_10_1186_s12863_016_0333_1
crossref_primary_10_1371_journal_pone_0054743
crossref_primary_10_1186_s12918_016_0300_5
crossref_primary_10_1101_gr_124107_111
crossref_primary_10_3389_fpls_2022_1098605
crossref_primary_10_1088_1742_6596_835_1_012002
crossref_primary_10_1186_1939_8433_5_18
crossref_primary_10_1093_bioinformatics_btu591
crossref_primary_10_1093_molbev_msad008
crossref_primary_10_1038_s41587_018_0003_0
crossref_primary_10_1042_BSR20150131
crossref_primary_10_1186_s12881_018_0615_8
crossref_primary_10_1038_srep09236
crossref_primary_10_1089_cmb_2011_0027
crossref_primary_10_1099_mgen_0_000907
crossref_primary_10_1186_s12864_017_4143_2
crossref_primary_10_1371_journal_pntd_0006635
crossref_primary_10_1038_srep23642
crossref_primary_10_1016_j_btre_2021_e00689
crossref_primary_10_1080_14620316_2016_1142359
crossref_primary_10_1109_TCBB_2018_2816022
crossref_primary_10_1534_genetics_109_107557
crossref_primary_10_1016_j_cbpb_2019_110392
crossref_primary_10_1186_s12859_014_0356_4
crossref_primary_10_1111_nph_15262
crossref_primary_10_1007_s00438_023_02007_3
crossref_primary_10_1007_s10725_021_00738_0
crossref_primary_10_1371_journal_pone_0108488
crossref_primary_10_1002_0471250953_bi1111s44
crossref_primary_10_1016_j_jia_2024_06_013
crossref_primary_10_1111_jdi_12824
crossref_primary_10_1152_physiolgenomics_00113_2015
crossref_primary_10_1371_journal_pone_0065546
crossref_primary_10_1007_s00438_015_1138_z
crossref_primary_10_1038_s42003_021_02864_x
crossref_primary_10_1038_nrg2986
crossref_primary_10_1002_ana_24319
crossref_primary_10_1111_nph_14040
crossref_primary_10_1016_j_fsigen_2014_08_013
crossref_primary_10_1016_j_prp_2022_153760
crossref_primary_10_1016_j_jbiotec_2017_04_037
crossref_primary_10_3389_fgene_2019_00251
crossref_primary_10_1093_bib_bbp058
crossref_primary_10_1007_s11427_011_4232_4
crossref_primary_10_1093_jac_dku019
crossref_primary_10_3389_fpls_2020_569958
crossref_primary_10_1111_j_1567_1364_2011_00777_x
crossref_primary_10_1159_000488029
crossref_primary_10_1101_gr_096388_109
crossref_primary_10_1128_EC_00312_12
crossref_primary_10_1038_jid_2011_62
crossref_primary_10_1186_1476_4598_13_19
crossref_primary_10_1186_s12859_016_1216_1
crossref_primary_10_3389_fmicb_2017_01238
crossref_primary_10_1093_bib_bbq016
crossref_primary_10_1097_ICO_0000000000003209
crossref_primary_10_1097_MD_0000000000007010
crossref_primary_10_3390_genes12091448
crossref_primary_10_1099_ijsem_0_003618
crossref_primary_10_3390_ani12233353
crossref_primary_10_1038_ncomms6315
crossref_primary_10_1093_gigascience_giy113
crossref_primary_10_1186_1471_2164_12_116
crossref_primary_10_1371_journal_pone_0064356
crossref_primary_10_1016_j_gene_2017_07_009
crossref_primary_10_1371_journal_pone_0063026
crossref_primary_10_1007_s00122_016_2758_3
crossref_primary_10_1016_j_future_2016_06_008
crossref_primary_10_1093_bib_bbz060
crossref_primary_10_1038_nrg2844
crossref_primary_10_3390_plants9101355
crossref_primary_10_1186_gb_2011_12_11_r114
crossref_primary_10_3892_mmr_2017_6887
crossref_primary_10_1002_jcla_23769
crossref_primary_10_1371_journal_pone_0098144
crossref_primary_10_1093_bioinformatics_btw212
crossref_primary_10_1371_journal_pone_0029500
crossref_primary_10_1109_TCBB_2016_2535251
crossref_primary_10_3201_eid2302_160297
crossref_primary_10_1016_j_csbj_2022_07_016
crossref_primary_10_1093_gigascience_gix039
crossref_primary_10_1186_s12864_017_3594_9
crossref_primary_10_1016_j_micres_2014_09_001
crossref_primary_10_1186_s40246_015_0053_z
crossref_primary_10_1016_j_fsi_2015_12_029
crossref_primary_10_1007_s00438_014_0979_1
crossref_primary_10_1038_ncomms7648
crossref_primary_10_1038_ng_2801
crossref_primary_10_1007_s13353_011_0068_7
crossref_primary_10_1016_j_canlet_2012_11_025
crossref_primary_10_1186_s13059_014_0415_1
crossref_primary_10_1111_tpj_12370
crossref_primary_10_1016_j_jmoldx_2013_09_003
crossref_primary_10_1186_1471_2164_13_S2_S6
crossref_primary_10_1016_j_micpath_2022_105389
crossref_primary_10_1093_bioinformatics_btu067
crossref_primary_10_1038_ng_680
crossref_primary_10_1007_s13721_016_0135_4
crossref_primary_10_1016_j_aquaculture_2021_737535
crossref_primary_10_1186_1471_2164_15_1163
crossref_primary_10_1186_s12864_015_2242_5
crossref_primary_10_1371_journal_pone_0164469
crossref_primary_10_3389_fphys_2022_884925
crossref_primary_10_1186_s12864_017_3812_5
crossref_primary_10_1002_bdr2_1146
crossref_primary_10_1371_journal_pone_0143765
crossref_primary_10_1186_1471_2164_12_382
crossref_primary_10_1038_ncomms6897
crossref_primary_10_1038_jhg_2013_72
crossref_primary_10_1186_s12864_017_3738_y
crossref_primary_10_1371_journal_pone_0040294
crossref_primary_10_18632_aging_102654
crossref_primary_10_1021_acs_jnatprod_7b00859
crossref_primary_10_1038_ncomms3138
crossref_primary_10_1093_bioinformatics_btp611
crossref_primary_10_1186_s13071_016_1436_2
crossref_primary_10_1007_s13580_021_00414_2
crossref_primary_10_1038_s41598_022_09433_0
crossref_primary_10_2135_cropsci2016_02_0137
crossref_primary_10_1155_2019_8705989
crossref_primary_10_1016_j_aquaculture_2019_04_013
crossref_primary_10_1186_1756_0500_7_698
crossref_primary_10_1038_srep06036
crossref_primary_10_1038_ng_684
crossref_primary_10_1097_JTO_0b013e3182a4dd8e
crossref_primary_10_1038_s41587_023_02057_3
crossref_primary_10_1002_humu_22472
crossref_primary_10_1038_ncomms5331
crossref_primary_10_1093_gigascience_gix059
crossref_primary_10_2353_jmoldx_2010_100043
crossref_primary_10_3389_fgene_2021_758366
crossref_primary_10_3892_mmr_2019_10058
crossref_primary_10_1038_ng_2827
crossref_primary_10_1101_gr_117259_110
crossref_primary_10_1186_2047_217X_3_27
crossref_primary_10_1007_s00216_016_9536_6
crossref_primary_10_1016_j_gene_2015_10_045
crossref_primary_10_1038_jid_2013_198
crossref_primary_10_1084_jem_20122842
crossref_primary_10_1007_s12539_015_0278_5
crossref_primary_10_1007_s13258_019_00864_0
crossref_primary_10_1021_acssensors_7b00667
crossref_primary_10_1016_j_jid_2019_03_1157
crossref_primary_10_1016_j_ymben_2020_04_009
crossref_primary_10_1073_pnas_2201113119
crossref_primary_10_1016_j_gene_2012_03_029
crossref_primary_10_1111_tpj_12569
crossref_primary_10_1186_gb_2011_12_6_r55
crossref_primary_10_1002_humu_22825
crossref_primary_10_1186_1471_2164_14_601
crossref_primary_10_1016_j_ijporl_2016_08_026
crossref_primary_10_1101_gr_225672_117
crossref_primary_10_1128_genomeA_00236_16
crossref_primary_10_1002_ijch_201200090
crossref_primary_10_1021_acs_analchem_1c01012
crossref_primary_10_1016_j_talanta_2019_03_106
crossref_primary_10_1111_pbi_12985
crossref_primary_10_1146_annurev_genom_090711_163814
crossref_primary_10_1016_j_bse_2019_02_001
crossref_primary_10_1002_slct_201702341
crossref_primary_10_1136_jmedgenet_2014_102961
crossref_primary_10_3389_fgene_2020_566314
crossref_primary_10_1007_s42161_019_00401_8
crossref_primary_10_1016_j_pestbp_2015_04_007
crossref_primary_10_15252_embj_2019103256
crossref_primary_10_1111_jwas_12303
crossref_primary_10_1093_bfgp_elu024
crossref_primary_10_3389_fpls_2017_01223
crossref_primary_10_4218_etrij_15_2314_0144
crossref_primary_10_1016_j_jgg_2011_02_003
crossref_primary_10_1038_s41598_017_10439_2
crossref_primary_10_1093_dnares_dsv019
crossref_primary_10_1371_journal_pone_0033673
crossref_primary_10_1016_j_scienta_2024_113816
crossref_primary_10_1093_dnares_dsu047
crossref_primary_10_1038_cr_2012_30
crossref_primary_10_1371_journal_pcbi_1002417
crossref_primary_10_2174_1386207323666200317121136
crossref_primary_10_1186_gb_2013_14_3_r29
crossref_primary_10_1007_s10661_023_12228_z
crossref_primary_10_1016_j_cell_2012_02_028
crossref_primary_10_1073_pnas_1306579110
crossref_primary_10_1155_2012_831460
crossref_primary_10_1093_nargab_lqad038
crossref_primary_10_1016_j_cell_2012_02_025
crossref_primary_10_1093_bioinformatics_btx133
crossref_primary_10_1016_j_snb_2019_126819
crossref_primary_10_1038_ncomms2256
crossref_primary_10_1126_science_1176620
crossref_primary_10_3390_ijms20040979
crossref_primary_10_1038_nbt_1992
crossref_primary_10_3389_fpls_2016_00496
crossref_primary_10_1186_s12864_017_3980_3
crossref_primary_10_1093_bib_bbw096
crossref_primary_10_1186_1471_2105_13_221
crossref_primary_10_1186_1471_2105_14_S7_S11
crossref_primary_10_1111_pbi_12645
crossref_primary_10_1186_1471_2105_14_274
crossref_primary_10_1111_mec_12693
crossref_primary_10_3389_fmicb_2018_01975
crossref_primary_10_1007_s10753_020_01334_6
crossref_primary_10_1186_s12864_015_1878_5
crossref_primary_10_1371_journal_pcbi_1003853
crossref_primary_10_1101_gr_114744_110
crossref_primary_10_1111_1755_0998_12147
crossref_primary_10_1016_j_cell_2013_11_040
crossref_primary_10_1097_MD_0000000000016738
crossref_primary_10_1007_s11032_019_0946_y
crossref_primary_10_1089_cmb_2015_0215
crossref_primary_10_1186_1471_2105_15_S9_S12
crossref_primary_10_1080_14620316_2021_1953405
crossref_primary_10_1182_blood_2013_12_546309
crossref_primary_10_2459_JCM_0000000000000589
crossref_primary_10_1093_dnares_dsw017
crossref_primary_10_1101_gr_112326_110
crossref_primary_10_1371_journal_pone_0065050
crossref_primary_10_1016_j_ajhg_2011_05_029
crossref_primary_10_1007_s13205_021_02949_8
crossref_primary_10_1016_j_ins_2015_01_011
crossref_primary_10_1101_gr_097261_109
crossref_primary_10_1186_1471_2105_14_289
crossref_primary_10_1002_mgg3_1634
crossref_primary_10_1016_j_gene_2012_07_090
crossref_primary_10_1089_omi_2012_0001
crossref_primary_10_1038_jhg_2014_114
crossref_primary_10_1186_gb_2011_12_10_r107
crossref_primary_10_7550_rmb_43498
crossref_primary_10_1093_bioinformatics_btq526
crossref_primary_10_1111_ahg_12114
crossref_primary_10_1038_ncomms3320
crossref_primary_10_4137_EBO_S10194
crossref_primary_10_1089_zeb_2015_1154
crossref_primary_10_1155_2012_318232
crossref_primary_10_1007_s12020_014_0368_x
crossref_primary_10_3168_jds_2017_13534
crossref_primary_10_4103_0301_4738_185597
crossref_primary_10_1142_S0219720013300025
crossref_primary_10_1109_TSP_2014_2333564
crossref_primary_10_1007_s00439_014_1460_2
crossref_primary_10_1371_journal_pone_0076059
crossref_primary_10_3390_microarrays4040570
crossref_primary_10_1371_journal_pone_0144927
crossref_primary_10_1186_1471_2105_12_267
crossref_primary_10_1186_s12859_021_04058_y
crossref_primary_10_1186_s12859_014_0418_7
crossref_primary_10_1186_gb_2009_10_11_r134
crossref_primary_10_3389_fgene_2015_00288
crossref_primary_10_3390_ijms21030863
crossref_primary_10_1111_pbi_12825
crossref_primary_10_3389_fgene_2019_00116
crossref_primary_10_1002_cpe_2925
crossref_primary_10_1111_cts_13911
crossref_primary_10_1111_jipb_12355
crossref_primary_10_1186_1756_0500_7_747
crossref_primary_10_1186_1471_2105_15_S11_S6
crossref_primary_10_1186_1471_2105_14_184
crossref_primary_10_1097_MD_0000000000004963
crossref_primary_10_3892_ijmm_2017_3308
crossref_primary_10_1371_journal_pgen_1002326
crossref_primary_10_1007_s13277_014_2003_0
crossref_primary_10_1186_1471_2148_10_81
crossref_primary_10_1093_bioinformatics_bty145
crossref_primary_10_1038_aja_2011_51
crossref_primary_10_1186_s12864_015_1887_4
crossref_primary_10_23922_jarc_2024_030
crossref_primary_10_3390_ijms17040501
crossref_primary_10_1371_journal_pone_0090346
crossref_primary_10_3389_fpls_2017_00266
crossref_primary_10_1016_j_fsi_2015_07_013
crossref_primary_10_1093_molbev_msy017
crossref_primary_10_1099_ijsem_0_003362
crossref_primary_10_1111_1556_4029_13794
crossref_primary_10_1534_genetics_115_179077
crossref_primary_10_3389_fphys_2022_926885
crossref_primary_10_1007_s12686_017_0900_4
crossref_primary_10_1371_journal_pone_0077022
crossref_primary_10_1093_bfgp_elx006
crossref_primary_10_1371_journal_pone_0090343
crossref_primary_10_1186_1471_2105_12_S10_S21
crossref_primary_10_1007_s12038_017_9686_5
crossref_primary_10_1016_j_gene_2017_05_053
crossref_primary_10_1371_journal_pgen_1003888
crossref_primary_10_1371_journal_pgen_1003645
crossref_primary_10_1093_bib_bby106
crossref_primary_10_1021_acs_jafc_0c00078
crossref_primary_10_1007_s00438_020_01739_w
crossref_primary_10_1093_bioinformatics_btz102
crossref_primary_10_1016_j_anireprosci_2018_08_041
crossref_primary_10_1093_bioinformatics_btr629
crossref_primary_10_1016_j_resmic_2013_02_005
crossref_primary_10_1016_j_ymgme_2012_08_020
crossref_primary_10_1038_nmeth_2023
crossref_primary_10_1590_1678_4685_gmb_2016_0321
crossref_primary_10_1038_ncomms3673
crossref_primary_10_1038_ng_715
crossref_primary_10_1007_s11738_019_2941_7
crossref_primary_10_1016_j_jneuroim_2011_12_017
crossref_primary_10_1007_s11032_017_0632_x
crossref_primary_10_1016_j_biocel_2017_09_018
crossref_primary_10_1038_ng_3199
crossref_primary_10_1371_journal_pone_0252181
crossref_primary_10_1007_s13353_015_0292_7
crossref_primary_10_1016_j_bbrc_2012_08_101
crossref_primary_10_1111_mec_16207
crossref_primary_10_1093_hmg_ddu442
crossref_primary_10_5812_hepatmon_80767
crossref_primary_10_1016_j_ajhg_2009_12_007
crossref_primary_10_1186_1471_2164_13_403
crossref_primary_10_1038_s41598_019_40210_8
crossref_primary_10_3390_ijms20010152
crossref_primary_10_1111_mec_14264
crossref_primary_10_1371_journal_pone_0023455
crossref_primary_10_1186_1471_2148_13_165
crossref_primary_10_1111_1755_0998_12553
crossref_primary_10_1016_j_diagmicrobio_2020_115025
crossref_primary_10_1016_j_imu_2022_101024
crossref_primary_10_1186_s12864_018_5127_6
crossref_primary_10_1016_j_gene_2013_04_081
crossref_primary_10_3892_or_2015_4080
crossref_primary_10_1093_bfgp_elr046
crossref_primary_10_1186_s13059_018_1452_y
crossref_primary_10_1371_journal_pone_0100060
crossref_primary_10_1093_bib_bbv062
crossref_primary_10_1371_journal_pone_0025509
crossref_primary_10_3389_fpls_2016_02055
crossref_primary_10_1073_pnas_1323011111
crossref_primary_10_1186_s12859_016_1279_z
crossref_primary_10_1002_mgg3_1660
crossref_primary_10_3390_ijms21030780
crossref_primary_10_3390_agronomy9080430
crossref_primary_10_1371_journal_pone_0159385
crossref_primary_10_1186_1471_2164_14_579
crossref_primary_10_1016_j_gpb_2016_11_001
crossref_primary_10_1016_j_fsi_2017_11_024
crossref_primary_10_1007_s13258_019_00787_w
crossref_primary_10_1186_1479_7364_8_14
crossref_primary_10_3892_etm_2016_3797
crossref_primary_10_1038_s43247_023_01066_z
crossref_primary_10_1111_ceo_12391
crossref_primary_10_1038_onc_2016_172
crossref_primary_10_1242_bio_016295
crossref_primary_10_1093_jisesa_ieac014
crossref_primary_10_1186_s12864_018_4610_4
crossref_primary_10_1371_journal_pone_0114241
crossref_primary_10_1093_bioinformatics_bty183
crossref_primary_10_3389_fpls_2018_01161
crossref_primary_10_1111_1755_0998_13744
crossref_primary_10_1371_journal_pone_0128659
crossref_primary_10_1038_ng_806
crossref_primary_10_1186_gm432
crossref_primary_10_1186_1471_2164_14_302
crossref_primary_10_1016_j_snb_2021_131309
crossref_primary_10_1186_1471_2164_14_425
crossref_primary_10_3389_fpls_2019_00718
crossref_primary_10_1371_journal_pone_0255761
crossref_primary_10_1111_pbr_12174
crossref_primary_10_1186_1471_2164_15_469
crossref_primary_10_1186_1471_2164_13_S7_S6
crossref_primary_10_1038_ng_921
crossref_primary_10_1186_1471_2164_15_589
crossref_primary_10_1186_s12864_015_1534_0
crossref_primary_10_1093_bioinformatics_bty059
crossref_primary_10_1270_jsbbs_18023
crossref_primary_10_3892_ijmm_2014_1797
crossref_primary_10_1007_s11033_022_07298_0
crossref_primary_10_1038_nature08696
crossref_primary_10_1093_jxb_erw057
crossref_primary_10_1128_MRA_00471_19
crossref_primary_10_1038_s41598_020_58984_7
crossref_primary_10_1371_journal_pone_0060881
crossref_primary_10_1016_j_hpj_2016_11_003
crossref_primary_10_1186_gb_2012_13_7_r61
crossref_primary_10_1016_j_cbd_2014_11_001
crossref_primary_10_1007_s00438_013_0807_z
crossref_primary_10_1038_nbt0710_691
crossref_primary_10_1093_bioinformatics_btr665
crossref_primary_10_1186_gb_2011_12_9_r95
crossref_primary_10_1016_j_ygeno_2018_07_001
crossref_primary_10_1038_ng_3036
crossref_primary_10_1080_17429145_2017_1392627
crossref_primary_10_1038_nbt_2195
crossref_primary_10_1186_1471_2164_15_571
crossref_primary_10_1186_s12879_019_4330_7
crossref_primary_10_1016_j_cell_2014_03_054
crossref_primary_10_1007_s12561_013_9084_y
crossref_primary_10_1007_s41745_020_00189_y
crossref_primary_10_1007_s11295_014_0831_0
crossref_primary_10_1038_ncomms3832
crossref_primary_10_1371_journal_pone_0080046
crossref_primary_10_1016_j_aquaculture_2025_742119
crossref_primary_10_1093_gbe_evu242
crossref_primary_10_1016_j_taap_2013_04_007
crossref_primary_10_3109_13816810_2014_886269
crossref_primary_10_2217_epi_2019_0023
crossref_primary_10_1186_1471_2164_14_887
crossref_primary_10_1242_dmm_018291
crossref_primary_10_1371_journal_pone_0072417
crossref_primary_10_1098_rsos_172054
crossref_primary_10_2174_0126664844274727231218061037
crossref_primary_10_1128_JCM_00535_13
crossref_primary_10_3390_bdcc7020068
crossref_primary_10_1016_j_jaci_2015_02_022
crossref_primary_10_1038_s41467_019_12493_y
crossref_primary_10_1093_bioinformatics_bts549
crossref_primary_10_1186_1475_2875_12_287
crossref_primary_10_1038_srep00055
crossref_primary_10_1371_journal_pone_0185237
crossref_primary_10_1007_s00122_019_03440_y
crossref_primary_10_18632_oncotarget_17052
crossref_primary_10_1111_nph_13695
crossref_primary_10_1097_IM9_0000000000000109
crossref_primary_10_1002_0471250953_bi1504s44
crossref_primary_10_1007_s00439_012_1213_z
crossref_primary_10_1093_femsyr_foy100
crossref_primary_10_1093_nar_gku375
crossref_primary_10_1534_g3_116_029397
crossref_primary_10_1038_tpj_2014_70
crossref_primary_10_5598_imafungus_2018_09_02_01
crossref_primary_10_1270_jsbbs_63_21
crossref_primary_10_1093_bioinformatics_btt503
crossref_primary_10_1016_j_ygeno_2012_02_005
crossref_primary_10_1111_pbi_14298
crossref_primary_10_1038_nbt_4235
crossref_primary_10_1007_s12561_012_9067_4
crossref_primary_10_1186_s12934_023_02142_x
crossref_primary_10_1186_1471_2164_15_S1_S11
crossref_primary_10_3892_mmr_2016_5014
crossref_primary_10_1016_j_ygeno_2014_06_005
crossref_primary_10_1111_tpj_16389
crossref_primary_10_1128_AEM_01458_21
crossref_primary_10_1186_1471_2105_14_225
crossref_primary_10_1016_j_cj_2018_11_010
crossref_primary_10_1111_1755_0998_12333
crossref_primary_10_1371_journal_pone_0156040
crossref_primary_10_1371_journal_pone_0252207
crossref_primary_10_1534_genetics_113_153049
crossref_primary_10_1534_genetics_113_154138
crossref_primary_10_1038_nrg3117
crossref_primary_10_1093_bfgp_elt040
crossref_primary_10_3390_genes3030545
crossref_primary_10_1155_2013_185679
crossref_primary_10_1007_s11032_017_0729_2
crossref_primary_10_1038_srep13115
crossref_primary_10_1093_gigascience_giac032
crossref_primary_10_1534_g3_117_039008
crossref_primary_10_1093_nar_gks280
crossref_primary_10_1214_13_AOAS660
crossref_primary_10_1186_gb_2010_11_9_r91
crossref_primary_10_3390_genes10110846
crossref_primary_10_1038_srep16507
crossref_primary_10_1186_s12870_015_0463_z
crossref_primary_10_1016_j_ympev_2019_106534
crossref_primary_10_1126_science_aao1887
crossref_primary_10_1371_journal_pone_0151826
crossref_primary_10_3390_genes1010038
crossref_primary_10_1093_bib_bbs088
crossref_primary_10_1038_ncomms3708
crossref_primary_10_1093_bioinformatics_btr344
crossref_primary_10_1038_modpathol_2012_121
crossref_primary_10_1158_1940_6207_CAPR_14_0108
crossref_primary_10_1093_nar_gks299
crossref_primary_10_1186_s12864_019_5533_4
crossref_primary_10_3389_fpls_2017_00546
crossref_primary_10_1002_celc_201300221
crossref_primary_10_1038_srep11042
crossref_primary_10_1371_journal_pone_0101261
crossref_primary_10_1038_ng_3117
crossref_primary_10_1371_journal_pone_0125571
crossref_primary_10_1371_journal_pone_0096855
crossref_primary_10_1038_s41588_019_0522_8
crossref_primary_10_1101_gr_113084_110
crossref_primary_10_1186_1471_2156_15_13
crossref_primary_10_1007_s00125_012_2756_1
crossref_primary_10_1007_s00122_018_3056_z
crossref_primary_10_1007_s10548_021_00885_7
crossref_primary_10_1038_jid_2013_49
crossref_primary_10_1093_nar_gkv135
crossref_primary_10_1371_journal_pone_0021791
crossref_primary_10_3892_br_2021_1492
crossref_primary_10_4103_0366_6999_178966
crossref_primary_10_1038_ng_1008
crossref_primary_10_1038_srep38636
crossref_primary_10_1016_j_rbmo_2018_03_009
crossref_primary_10_52361_fsbh_2022_2_e32
crossref_primary_10_1007_s10811_018_1604_1
crossref_primary_10_1016_j_neurobiolaging_2013_04_029
crossref_primary_10_1128_genomeA_00104_17
crossref_primary_10_1371_journal_pone_0030952
crossref_primary_10_2135_cropsci2012_02_0065
crossref_primary_10_1016_j_meegid_2009_11_013
crossref_primary_10_1002_gepi_20501
crossref_primary_10_7554_eLife_81258
crossref_primary_10_1002_0471250953_bi1503s39
crossref_primary_10_1016_j_cca_2017_06_015
crossref_primary_10_1186_s13059_014_0557_1
crossref_primary_10_1016_j_fsigss_2015_10_002
crossref_primary_10_1093_biomet_asv012
crossref_primary_10_1371_journal_pone_0157362
crossref_primary_10_1111_mec_14090
crossref_primary_10_1186_gb_2010_11_11_r116
crossref_primary_10_1128_mSphere_00937_20
crossref_primary_10_1101_gr_157388_113
crossref_primary_10_1371_journal_pgen_1006455
crossref_primary_10_1371_journal_pone_0072686
crossref_primary_10_1109_TCBB_2018_2858267
crossref_primary_10_1186_1471_2105_12_S1_S53
crossref_primary_10_3390_md17090504
crossref_primary_10_1007_s10681_011_0574_z
crossref_primary_10_1186_1471_2164_13_588
crossref_primary_10_1038_nbt_2050
crossref_primary_10_1093_bioinformatics_bts001
crossref_primary_10_32604_phyton_2021_014880
crossref_primary_10_1111_imb_12216
crossref_primary_10_1016_j_scienta_2019_108907
crossref_primary_10_1186_2047_2501_1_6
crossref_primary_10_1016_j_heliyon_2019_e02530
crossref_primary_10_1016_j_ejmg_2015_11_001
crossref_primary_10_1016_j_ymben_2016_03_003
crossref_primary_10_1111_petr_13143
crossref_primary_10_1016_j_csbj_2017_07_004
crossref_primary_10_1186_gb_2011_12_9_227
crossref_primary_10_1186_s12864_018_4952_y
crossref_primary_10_1016_j_dit_2013_07_005
crossref_primary_10_1002_cncr_30337
crossref_primary_10_1016_j_apsb_2017_07_005
crossref_primary_10_1093_hmg_ddu747
crossref_primary_10_3892_mmr_2014_3135
crossref_primary_10_1016_j_dci_2018_09_003
crossref_primary_10_1145_3340286
crossref_primary_10_1186_1471_2350_14_107
crossref_primary_10_1371_journal_pone_0135332
crossref_primary_10_1104_pp_110_166736
crossref_primary_10_1186_gb_2014_15_2_r36
crossref_primary_10_1371_journal_pone_0115740
crossref_primary_10_1038_srep06216
crossref_primary_10_1038_ncomms6188
crossref_primary_10_1002_jgm_3191
crossref_primary_10_1371_journal_pone_0087940
crossref_primary_10_1038_srep20758
crossref_primary_10_3389_fpls_2022_860034
crossref_primary_10_1186_s12859_018_2579_2
crossref_primary_10_1371_journal_pone_0075619
crossref_primary_10_1093_nar_gku392
crossref_primary_10_1038_ng_2588
crossref_primary_10_1093_bioinformatics_btv507
crossref_primary_10_1371_journal_pgen_1005228
crossref_primary_10_1371_journal_pone_0092298
crossref_primary_10_1007_s11427_017_9161_4
crossref_primary_10_1038_nature13408
crossref_primary_10_1007_s10529_016_2187_z
crossref_primary_10_1016_j_virusres_2016_12_008
crossref_primary_10_1038_ng_2343
crossref_primary_10_1111_imb_12234
crossref_primary_10_2337_db11_0985
crossref_primary_10_1016_j_cell_2017_12_019
crossref_primary_10_1155_2016_5284786
crossref_primary_10_1093_nar_gky445
crossref_primary_10_1371_journal_pone_0101754
crossref_primary_10_1016_j_neucom_2015_12_001
crossref_primary_10_1111_j_1365_294X_2011_05463_x
crossref_primary_10_1534_g3_116_029660
crossref_primary_10_1038_s41397_021_00245_5
crossref_primary_10_1182_blood_2014_08_596445
crossref_primary_10_1530_EC_18_0326
crossref_primary_10_1371_journal_pone_0094046
crossref_primary_10_1371_journal_pone_0075402
crossref_primary_10_1016_j_dci_2014_01_022
crossref_primary_10_1104_pp_110_158949
crossref_primary_10_1186_1471_2164_13_692
crossref_primary_10_7717_peerj_3303
crossref_primary_10_1186_1471_2156_14_98
crossref_primary_10_3390_medsci2020098
crossref_primary_10_1093_annonc_mdq664
crossref_primary_10_3390_mi11010039
crossref_primary_10_1002_gepi_21636
crossref_primary_10_1371_journal_pone_0161928
crossref_primary_10_1186_s12859_016_0879_y
crossref_primary_10_1038_ng_2409
crossref_primary_10_1186_s12862_014_0250_8
crossref_primary_10_1371_journal_pone_0121351
crossref_primary_10_1371_journal_pgen_1009762
crossref_primary_10_1111_mec_16471
crossref_primary_10_1016_j_cub_2012_07_042
crossref_primary_10_1186_s12870_018_1429_8
crossref_primary_10_1038_ng_2524
crossref_primary_10_1111_j_1399_0004_2011_01714_x
crossref_primary_10_1016_j_cj_2017_12_002
crossref_primary_10_1016_j_jaci_2014_04_042
crossref_primary_10_1155_2015_456479
crossref_primary_10_1371_journal_pone_0136995
crossref_primary_10_1155_2015_923491
crossref_primary_10_1093_bib_bbab070
crossref_primary_10_1101_gr_100040_109
crossref_primary_10_1002_cam4_1717
crossref_primary_10_1016_j_jbi_2014_10_001
crossref_primary_10_1093_bioinformatics_bts047
crossref_primary_10_1053_j_seminoncol_2015_09_004
crossref_primary_10_1111_pbi_13002
crossref_primary_10_1177_0269881113499829
crossref_primary_10_3390_ijms160921791
crossref_primary_10_1002_gepi_21747
crossref_primary_10_1007_s00438_015_1127_2
crossref_primary_10_1080_01490451_2014_991812
crossref_primary_10_1186_1480_9222_15_4
crossref_primary_10_1186_s12862_017_0929_8
crossref_primary_10_1002_cbin_11912
crossref_primary_10_1038_nature11280
crossref_primary_10_1007_s12686_023_01300_y
crossref_primary_10_1186_1471_2164_14_101
crossref_primary_10_1186_s12864_015_1609_y
crossref_primary_10_1007_s12686_016_0630_z
crossref_primary_10_1038_ng_2313
crossref_primary_10_1093_bioinformatics_btw409
crossref_primary_10_1186_1471_2164_13_77
crossref_primary_10_1016_j_jbiotec_2017_02_013
crossref_primary_10_1128_genomeA_00087_16
crossref_primary_10_3732_ajb_1100335
crossref_primary_10_1038_nbt_2122
crossref_primary_10_1109_TPDS_2018_2839578
crossref_primary_10_1002_humu_22075
crossref_primary_10_1073_pnas_1420949112
crossref_primary_10_1038_s42003_021_01724_y
crossref_primary_10_1093_molbev_msac016
crossref_primary_10_1099_jmm_0_001756
crossref_primary_10_1101_gad_1864110
crossref_primary_10_1128_MRA_01480_19
crossref_primary_10_1186_s12859_016_1192_5
crossref_primary_10_1038_srep14283
crossref_primary_10_1136_jmedgenet_2017_105145
crossref_primary_10_1002_pd_5298
crossref_primary_10_1186_s12915_018_0572_x
crossref_primary_10_7717_peerj_2664
crossref_primary_10_1186_s12864_017_3854_8
crossref_primary_10_1038_nbt_3200
crossref_primary_10_1126_science_1225385
crossref_primary_10_1007_s00438_015_1017_7
crossref_primary_10_1186_1756_0500_5_338
crossref_primary_10_1186_s13068_015_0415_8
crossref_primary_10_2174_1386207323666201211095018
crossref_primary_10_1007_s12041_014_0324_9
Cites_doi 10.1038/nature07517
10.1038/nature04226
10.1038/70570
10.1038/nrg1325
10.1126/science.1058040
10.1101/gr.8.3.175
10.1038/35057050
10.1038/nature06258
10.1101/gr.6151507
10.1038/nmeth1109
10.1038/nrg1522
10.1038/nature03001
10.1016/j.gde.2006.10.009
10.1038/35057149
10.1038/nmeth1110
10.1093/bioinformatics/btn025
10.1038/35035083
10.1093/nar/29.1.308
10.1101/gr.287302
10.1038/nature07484
10.1038/35057062
10.1101/gr.070227.107
10.1101/gr.156901
10.1101/gr.194201
10.1371/journal.pcbi.0010053
10.1038/nmeth1111
10.1038/ng.2007.42
10.1038/nature06884
10.1101/gr.078212.108
10.1038/ng1746
10.1101/gr.2754005
ContentType Journal Article
Copyright Copyright © 2009 by Cold Spring Harbor Laboratory Press 2009
Copyright_xml – notice: Copyright © 2009 by Cold Spring Harbor Laboratory Press 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1101/gr.088013.108
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Li et al
EISSN 1549-5477
EndPage 1132
ExternalDocumentID PMC2694485
19420381
10_1101_gr_088013_108
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAFWJ
AAYOK
AAYXX
AAZTW
ABDIX
ABDNZ
ACGFO
ACLKE
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
R.V
RCX
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
-DZ
-~X
.55
0VX
5PM
85S
ABCQX
ACNCT
ADIYS
ADXHL
AETEA
AFFNX
H~9
L7B
MVM
N9A
OK1
P2P
TN5
UHB
WH7
X7M
XJT
XSW
YBU
YHG
YSK
ZY4
ID FETCH-LOGICAL-c451t-488378c16ea98b209510d2ca4ee4343f66b70040af854b69ef84b1067600f03
ISSN 1088-9051
IngestDate Thu Aug 21 14:02:23 EDT 2025
Thu Aug 07 15:02:58 EDT 2025
Thu Apr 03 07:06:11 EDT 2025
Tue Jul 01 02:20:34 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-488378c16ea98b209510d2ca4ee4343f66b70040af854b69ef84b1067600f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://genome.cshlp.org/content/19/6/1124.full.pdf
PMID 19420381
PQID 67308725
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2694485
proquest_miscellaneous_67308725
pubmed_primary_19420381
crossref_primary_10_1101_gr_088013_108
crossref_citationtrail_10_1101_gr_088013_108
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genome Research
PublicationTitleAlternate Genome Res
PublicationYear 2009
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021111811053349000_19.6.1124.17
2021111811053349000_19.6.1124.16
2021111811053349000_19.6.1124.19
2021111811053349000_19.6.1124.18
2021111811053349000_19.6.1124.1
2021111811053349000_19.6.1124.2
2021111811053349000_19.6.1124.7
2021111811053349000_19.6.1124.31
2021111811053349000_19.6.1124.8
2021111811053349000_19.6.1124.30
2021111811053349000_19.6.1124.9
2021111811053349000_19.6.1124.11
2021111811053349000_19.6.1124.10
2021111811053349000_19.6.1124.32
2021111811053349000_19.6.1124.3
2021111811053349000_19.6.1124.13
2021111811053349000_19.6.1124.4
2021111811053349000_19.6.1124.12
2021111811053349000_19.6.1124.5
2021111811053349000_19.6.1124.15
2021111811053349000_19.6.1124.6
2021111811053349000_19.6.1124.14
2021111811053349000_19.6.1124.28
2021111811053349000_19.6.1124.27
2021111811053349000_19.6.1124.29
Shendure (2021111811053349000_19.6.1124.23) 2004; 5
2021111811053349000_19.6.1124.20
2021111811053349000_19.6.1124.22
2021111811053349000_19.6.1124.21
2021111811053349000_19.6.1124.24
2021111811053349000_19.6.1124.26
2021111811053349000_19.6.1124.25
17934468 - Nat Methods. 2007 Nov;4(11):931-6
18987735 - Nature. 2008 Nov 6;456(7218):60-5
17934469 - Nat Methods. 2007 Nov;4(11):907-9
11237013 - Nature. 2001 Feb 15;409(6822):928-33
11125122 - Nucleic Acids Res. 2001 Jan 1;29(1):308-11
17934467 - Nat Methods. 2007 Nov;4(11):903-5
18987734 - Nature. 2008 Nov 6;456(7218):53-9
17943122 - Nature. 2007 Oct 18;449(7164):851-61
11156626 - Genome Res. 2001 Jan;11(1):170-8
15716907 - Nat Rev Genet. 2005 Feb;6(2):109-18
17982454 - Nat Genet. 2007 Dec;39(12):1522-7
15143316 - Nat Rev Genet. 2004 May;5(5):335-44
11591649 - Genome Res. 2001 Oct;11(10):1725-9
16261194 - PLoS Comput Biol. 2005 Oct;1(5):e53
17416743 - Genome Res. 2007 May;17(5):659-66
11237009 - Nature. 2001 Feb 15;409(6822):853-5
18227114 - Bioinformatics. 2008 Mar 1;24(5):713-4
10581034 - Nat Genet. 1999 Dec;23(4):452-6
11181995 - Science. 2001 Feb 16;291(5507):1304-51
9521921 - Genome Res. 1998 Mar;8(3):175-85
18714091 - Genome Res. 2008 Nov;18(11):1851-8
17055251 - Curr Opin Genet Dev. 2006 Dec;16(6):545-52
11237011 - Nature. 2001 Feb 15;409(6822):860-921
18421352 - Nature. 2008 Apr 17;452(7189):872-6
9521922 - Genome Res. 1998 Mar;8(3):186-94
15496913 - Nature. 2004 Oct 21;431(7011):931-45
15741513 - Genome Res. 2005 Mar;15(3):436-42
12421754 - Genome Res. 2002 Nov;12(11):1679-86
16255080 - Nature. 2005 Oct 27;437(7063):1299-320
11029002 - Nature. 2000 Sep 28;407(6803):513-6
16493422 - Nat Genet. 2006 Mar;38(3):375-81
18212088 - Genome Res. 2008 May;18(5):763-70
References_xml – ident: 2021111811053349000_19.6.1124.4
  doi: 10.1038/nature07517
– ident: 2021111811053349000_19.6.1124.12
  doi: 10.1038/nature04226
– ident: 2021111811053349000_19.6.1124.19
  doi: 10.1038/70570
– volume: 5
  start-page: 335
  year: 2004
  ident: 2021111811053349000_19.6.1124.23
  article-title: Advanced sequencing technologies: Methods and goals
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1325
– ident: 2021111811053349000_19.6.1124.26
  doi: 10.1126/science.1058040
– ident: 2021111811053349000_19.6.1124.9
  doi: 10.1101/gr.8.3.175
– ident: 2021111811053349000_19.6.1124.15
  doi: 10.1038/35057050
– ident: 2021111811053349000_19.6.1124.13
  doi: 10.1038/nature06258
– ident: 2021111811053349000_19.6.1124.6
  doi: 10.1101/gr.6151507
– ident: 2021111811053349000_19.6.1124.21
  doi: 10.1038/nmeth1109
– ident: 2021111811053349000_19.6.1124.27
  doi: 10.1038/nrg1522
– ident: 2021111811053349000_19.6.1124.7
  doi: 10.1038/nature03001
– ident: 2021111811053349000_19.6.1124.3
  doi: 10.1016/j.gde.2006.10.009
– ident: 2021111811053349000_19.6.1124.14
  doi: 10.1038/35057149
– ident: 2021111811053349000_19.6.1124.22
  doi: 10.1038/nmeth1110
– ident: 2021111811053349000_19.6.1124.18
  doi: 10.1093/bioinformatics/btn025
– ident: 2021111811053349000_19.6.1124.2
  doi: 10.1038/35035083
– ident: 2021111811053349000_19.6.1124.24
  doi: 10.1093/nar/29.1.308
– ident: 2021111811053349000_19.6.1124.32
  doi: 10.1101/gr.287302
– ident: 2021111811053349000_19.6.1124.28
  doi: 10.1038/nature07484
– ident: 2021111811053349000_19.6.1124.16
  doi: 10.1038/35057062
– ident: 2021111811053349000_19.6.1124.5
  doi: 10.1101/gr.070227.107
– ident: 2021111811053349000_19.6.1124.8
  doi: 10.1101/gr.156901
– ident: 2021111811053349000_19.6.1124.10
  doi: 10.1101/gr.8.3.175
– ident: 2021111811053349000_19.6.1124.20
  doi: 10.1101/gr.194201
– ident: 2021111811053349000_19.6.1124.31
  doi: 10.1371/journal.pcbi.0010053
– ident: 2021111811053349000_19.6.1124.1
  doi: 10.1038/nmeth1111
– ident: 2021111811053349000_19.6.1124.11
  doi: 10.1038/ng.2007.42
– ident: 2021111811053349000_19.6.1124.30
  doi: 10.1038/nature06884
– ident: 2021111811053349000_19.6.1124.17
  doi: 10.1101/gr.078212.108
– ident: 2021111811053349000_19.6.1124.25
  doi: 10.1038/ng1746
– ident: 2021111811053349000_19.6.1124.29
  doi: 10.1101/gr.2754005
– reference: 11237013 - Nature. 2001 Feb 15;409(6822):928-33
– reference: 16261194 - PLoS Comput Biol. 2005 Oct;1(5):e53
– reference: 9521922 - Genome Res. 1998 Mar;8(3):186-94
– reference: 18421352 - Nature. 2008 Apr 17;452(7189):872-6
– reference: 11237011 - Nature. 2001 Feb 15;409(6822):860-921
– reference: 15716907 - Nat Rev Genet. 2005 Feb;6(2):109-18
– reference: 15143316 - Nat Rev Genet. 2004 May;5(5):335-44
– reference: 17416743 - Genome Res. 2007 May;17(5):659-66
– reference: 18714091 - Genome Res. 2008 Nov;18(11):1851-8
– reference: 11237009 - Nature. 2001 Feb 15;409(6822):853-5
– reference: 18227114 - Bioinformatics. 2008 Mar 1;24(5):713-4
– reference: 15496913 - Nature. 2004 Oct 21;431(7011):931-45
– reference: 10581034 - Nat Genet. 1999 Dec;23(4):452-6
– reference: 12421754 - Genome Res. 2002 Nov;12(11):1679-86
– reference: 11181995 - Science. 2001 Feb 16;291(5507):1304-51
– reference: 18987734 - Nature. 2008 Nov 6;456(7218):53-9
– reference: 18987735 - Nature. 2008 Nov 6;456(7218):60-5
– reference: 11591649 - Genome Res. 2001 Oct;11(10):1725-9
– reference: 17055251 - Curr Opin Genet Dev. 2006 Dec;16(6):545-52
– reference: 9521921 - Genome Res. 1998 Mar;8(3):175-85
– reference: 15741513 - Genome Res. 2005 Mar;15(3):436-42
– reference: 17943122 - Nature. 2007 Oct 18;449(7164):851-61
– reference: 16493422 - Nat Genet. 2006 Mar;38(3):375-81
– reference: 16255080 - Nature. 2005 Oct 27;437(7063):1299-320
– reference: 17982454 - Nat Genet. 2007 Dec;39(12):1522-7
– reference: 11156626 - Genome Res. 2001 Jan;11(1):170-8
– reference: 17934468 - Nat Methods. 2007 Nov;4(11):931-6
– reference: 11125122 - Nucleic Acids Res. 2001 Jan 1;29(1):308-11
– reference: 17934469 - Nat Methods. 2007 Nov;4(11):907-9
– reference: 17934467 - Nat Methods. 2007 Nov;4(11):903-5
– reference: 18212088 - Genome Res. 2008 May;18(5):763-70
– reference: 11029002 - Nature. 2000 Sep 28;407(6803):513-6
SSID ssj0003488
ssj0006066
Score 2.524347
Snippet Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1124
SubjectTerms Algorithms
Asian Continental Ancestry Group - genetics
Chromosomes, Human, X - genetics
Computational Biology - methods
Genetics, Population - methods
Genome, Human - genetics
Genotype
Humans
Likelihood Functions
Models, Genetic
Models, Statistical
Polymorphism, Single Nucleotide
Probability
Reproducibility of Results
Resource
Sequence Analysis, DNA - instrumentation
Sequence Analysis, DNA - methods
Software
Title SNP detection for massively parallel whole-genome resequencing
URI https://www.ncbi.nlm.nih.gov/pubmed/19420381
https://www.proquest.com/docview/67308725
https://pubmed.ncbi.nlm.nih.gov/PMC2694485
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELa2qar2ErVJH5u-fKhySUmANV64VErTx6ZVo6pJpc0J2cZsV8qyCQVVza_PDGAD6VZKe0HIGBuYj5mx_XmGkFdM8sQVAsArA-4wkaaOcJVyuGJKRolKg4ry_-WIT76zT9NgOhgcdlhLZSF31eXKfSX_I1UoA7niLtl_kKxtFArgHOQLR5AwHG8k4-OjrzuJLrSyhMEF-MKgv3DKQuSYJuVs5xdmwHUwFusCU6Q03GljsRq_9GN72U5uIU2nWuv_Vs4vAEWzfukpNJGXcwuAZuJ5Ohcw0m0rnzblk1JkC9OrmWaIWjpUoxlBHTkYzKunOqMORLp6ELw41rGpmM5-tb6u8gTM8l1oHZxRZDy2hsksxl-zV5ZFWI1fXC-e5XF9O0Y7vUVu-zBiwGQW7w4_W6M8YmG9K7J5Cxtu1dvr9d53T_4Yc1ynznZ8kZP7ZL0ZRND9GhEPyEBnG2RzPxPFcvGbbtOK1lutl2yQO2_N2d0Dk9xvk7wB6FALHQrQoRY61ECHdqFDu9B5SI4_vD85mDhNKg1HscArHHj70ThUHtciCqVf-dWJrwTTGrcWp5xLzHPgijQM4PeNdBoyidEFwR9O3dEjspYtM_2EUK4CTwuRuKMkYr4vpK_TxHOF5CyM1Ngfktfm-8WqiTKPyU7O4pXSGpJtW_28Dq_yt4ovjTBi-FS4qiUyvSx_IjHRDcd-MCSPa9G0DcET4kL4kIx7QrMVMLR6_0o2_1GFWMf93SwMtm76eE_JvfaneUbWirzUz8FbLeSLCodX1waVBQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SNP+detection+for+massively+parallel+whole-genome+resequencing&rft.jtitle=Genome+research&rft.au=Li%2C+Ruiqiang&rft.au=Li%2C+Yingrui&rft.au=Fang%2C+Xiaodong&rft.au=Yang%2C+Huanming&rft.date=2009-06-01&rft.issn=1088-9051&rft.volume=19&rft.issue=6&rft.spage=1124&rft.epage=1132&rft_id=info:doi/10.1101%2Fgr.088013.108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1101_gr_088013_108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon