SNP detection for massively parallel whole-genome resequencing
Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-geno...
Saved in:
Published in | Genome Research Vol. 19; no. 6; pp. 1124 - 1132 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Next-generation massively parallel sequencing technologies provide ultrahigh throughput at two orders of magnitude lower unit cost than capillary Sanger sequencing technology. One of the key applications of next-generation sequencing is studying genetic variation between individuals using whole-genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36× coverage and assembled a high-quality nonrepetitive consensus sequence for 92.25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered at 99.97% and 99.84% consistency, respectively. At a low sequencing depth, we used prior probability of dbSNP alleles and were able to improve coverage of the dbSNP sites significantly as compared to that obtained using a nonimputation model. Our analyses demonstrate that our method has a very low false call rate at any sequencing depth and excellent genome coverage at a high sequencing depth. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 1088-9051 1549-5477 |
DOI: | 10.1101/gr.088013.108 |