Fruit Detection and Recognition Based on Deep Learning for Automatic Harvesting: An Overview and Review

Continuing progress in machine learning (ML) has led to significant advancements in agricultural tasks. Due to its strong ability to extract high-dimensional features from fruit images, deep learning (DL) is widely used in fruit detection and automatic harvesting. Convolutional neural networks (CNN)...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 13; no. 6; p. 1625
Main Authors Xiao, Feng, Wang, Haibin, Xu, Yueqin, Zhang, Ruiqing
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Continuing progress in machine learning (ML) has led to significant advancements in agricultural tasks. Due to its strong ability to extract high-dimensional features from fruit images, deep learning (DL) is widely used in fruit detection and automatic harvesting. Convolutional neural networks (CNN) in particular have demonstrated the ability to attain accuracy and speed levels comparable to those of humans in some fruit detection and automatic harvesting fields. This paper presents a comprehensive overview and review of fruit detection and recognition based on DL for automatic harvesting from 2018 up to now. We focus on the current challenges affecting fruit detection performance for automatic harvesting: the scarcity of high-quality fruit datasets, fruit detection of small targets, fruit detection in occluded and dense scenarios, fruit detection of multiple scales and multiple species, and lightweight fruit detection models. In response to these challenges, we propose feasible solutions and prospective future development trends. Future research should prioritize addressing these current challenges and improving the accuracy, speed, robustness, and generalization of fruit vision detection systems, while reducing the overall complexity and cost. This paper hopes to provide a reference for follow-up research in the field of fruit detection and recognition based on DL for automatic harvesting.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy13061625