Genetic reassortment of infectious bursal disease virus in nature

Infectious bursal disease virus (IBDV), a double-stranded RNA virus, is a member of the Birnaviridae family. Four pathotypes of IBDV, attenuated, virulent, antigenic variant, and very virulent (vvIBDV), have been identified. We isolated and characterized the genomic reassortant IBDV strain ZJ2000 fr...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 350; no. 2; pp. 277 - 287
Main Authors Wei, Yongwei, Li, Jianrong, Zheng, Jiangtao, Xu, Hong, Li, Long, Yu, Lian
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 17.11.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Infectious bursal disease virus (IBDV), a double-stranded RNA virus, is a member of the Birnaviridae family. Four pathotypes of IBDV, attenuated, virulent, antigenic variant, and very virulent (vvIBDV), have been identified. We isolated and characterized the genomic reassortant IBDV strain ZJ2000 from severe field outbreaks in commercial flocks. Full-length genomic sequence analysis showed that ZJ2000 is a natural genetic reassortant virus with segments A and B derived from attenuated and very virulent strains of IBDV, respectively. ZJ2000 exhibited delayed replication kinetics as compared to attenuated strains. However, ZJ2000 was pathogenic to specific pathogen free (SPF) chickens and chicken embryos. Similar to a standard virulent IBDV strain, ZJ2000 caused 26.7% mortality, 100% morbidity, and severe bursal lesions at both gross and histopathological levels. Taken together, our data provide direct evidence for genetic reassortment of IBDV in nature, which may play an important role in the evolution, virulence, and host range of IBDV. Our data also suggest that VP2 is not the sole determinant of IBDV virulence, and that the RNA-dependent RNA polymerase protein, VP1, may play an important role in IBDV virulence. The discovery of reassortant viruses in nature suggests an additional risk of using live IBDV vaccines, which could act as genetic donors for genome reassortment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2006.09.040