An overview on electrospinning and its advancement toward hard and soft tissue engineering applications
One of the emerging technologies of the recent times harboring nanotechnology to fabricate nanofibers for various biomedical and environmental applications are electrospinning (nanofiber technology). Their relative ease in use, simplicity, functionality and diversity has surpassed the pitfalls encou...
Saved in:
Published in | Colloid and polymer science Vol. 300; no. 8; pp. 875 - 901 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | One of the emerging technologies of the recent times harboring nanotechnology to fabricate nanofibers for various biomedical and environmental applications are electrospinning (nanofiber technology). Their relative ease in use, simplicity, functionality and diversity has surpassed the pitfalls encountered with the conventional method of generating fibers. This review aims to provide an overview of electrospinning, principle, methods, feed materials, and applications toward tissue engineering. To begin with, evolution of electrospinning and its typical apparatus have been briefed. Simultaneously, discussion on the production of nanofibers with diversified feed materials such as polymers, small molecules, colloids, and nanoparticles and its transformation into a powerful technology has been dealt with. Further, highlights on the application of nanofibers in tissue engineering and the commercialized products developed using nanofiber technology have been summed up. With this rapidly emerging technology, there would be a great demand pertaining to scalability and environmental challenge toward tissue engineering applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 0303-402X 1435-1536 |
DOI: | 10.1007/s00396-022-04997-9 |