Improved FRAP Measurements on Biofilms
We expand the standard fluorescence recovery after photobleaching (FRAP) model introduced by Axelrod et al. in 1976. Our goal is to capture some of the following common artifacts observed in the fluorescence measurements obtained with a confocal laser scanning microscope in biofilms: 1) linear drift...
Saved in:
Published in | Biophysical journal Vol. 118; no. 10; pp. 2354 - 2365 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
19.05.2020
The Biophysical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We expand the standard fluorescence recovery after photobleaching (FRAP) model introduced by Axelrod et al. in 1976. Our goal is to capture some of the following common artifacts observed in the fluorescence measurements obtained with a confocal laser scanning microscope in biofilms: 1) linear drift, 2) exponential decrease (due to bleaching during the measurements), 3) stochastic Gaussian noise, and 4) uncertainty in the exact time point of the onset of fluorescence recovery. To fit the resulting stochastic model to data from FRAP measurements and to estimate all unknown model parameters, we apply a suitably adapted Metropolis-Hastings algorithm. In this way, a more accurate estimation of the diffusion coefficient of the fluorophore is achieved. The method was tested on data obtained from FRAP measurements on a cultivated biofilm. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/j.bpj.2020.03.017 |