Encryption-decryption-based state estimation for nonlinear complex networks subject to coupled perturbation
This paper discusses the encryption-decryption-based state estimation (EDBSE) issue for coupled perturbation complex networks (CPCNs) in the framework of the Kalman-type filtering scheme. A uniform distributed random variable is employed to characterize the coupled perturbation among different netwo...
Saved in:
Published in | Systems science & control engineering Vol. 12; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Macclesfield
Taylor & Francis
31.12.2024
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper discusses the encryption-decryption-based state estimation (EDBSE) issue for coupled perturbation complex networks (CPCNs) in the framework of the Kalman-type filtering scheme. A uniform distributed random variable is employed to characterize the coupled perturbation among different network units. A uniform-quantization-dependent encryption-decryption (UQDED) scheme is considered here to orchestrate the transmitted data. A novel EDBSE approach is developed such that the upper bounds of prediction error (PE) covariance (PEC) and estimation error (EE) covariance (EEC) can be derived by resolving Riccati-like difference equations and the estimation parameter (EP) is determined by minimizing the trace of the upper bound of EEC. Furthermore, a uniformly bounded condition is elaborated to evaluate the algorithm performance of EDBSE. Finally, an illustrative example is conducted to verify the validity of the introduced EDBSE method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2164-2583 2164-2583 |
DOI: | 10.1080/21642583.2024.2357796 |