Neonatal Seizure Detection Using Deep Convolutional Neural Networks

Identifying a core set of features is one of the most important steps in the development of an automated seizure detector. In most of the published studies describing features and seizure classifiers, the features were hand-engineered, which may not be optimal. The main goal of the present paper is...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of neural systems Vol. 29; no. 4; p. 1850011
Main Authors Ansari, Amir H, Cherian, Perumpillichira J, Caicedo, Alexander, Naulaers, Gunnar, De Vos, Maarten, Van Huffel, Sabine
Format Journal Article
LanguageEnglish
Published Singapore 01.05.2019
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Identifying a core set of features is one of the most important steps in the development of an automated seizure detector. In most of the published studies describing features and seizure classifiers, the features were hand-engineered, which may not be optimal. The main goal of the present paper is using deep convolutional neural networks (CNNs) and random forest to automatically optimize feature selection and classification. The input of the proposed classifier is raw multi-channel EEG and the output is the class label: seizure/nonseizure. By training this network, the required features are optimized, while fitting a nonlinear classifier on the features. After training the network with EEG recordings of 26 neonates, five end layers performing the classification were replaced with a random forest classifier in order to improve the performance. This resulted in a false alarm rate of 0.9 per hour and seizure detection rate of 77% using a test set of EEG recordings of 22 neonates that also included dubious seizures. The newly proposed CNN classifier outperformed three data-driven feature-based approaches and performed similar to a previously developed heuristic method.
ISSN:1793-6462
DOI:10.1142/S0129065718500119