In vivo vibroacoustography of large peripheral arteries

Vibroacoustography allows imaging of objects on the basis of their acoustic signal emitted during low-frequency (kHz) vibrations produced by 2 intersecting ultrasound beams at slightly different frequencies. This study tested the feasibility of using vibroacoustography to distinguish between normal...

Full description

Saved in:
Bibliographic Details
Published inInvestigative radiology Vol. 43; no. 4; p. 243
Main Authors Pislaru, Cristina, Kantor, Birgit, Kinnick, Randall R, Anderson, Jill L, Aubry, Marie-Christine, Urban, Matthew W, Fatemi, Mostafa, Greenleaf, James F
Format Journal Article
LanguageEnglish
Published United States 01.04.2008
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Vibroacoustography allows imaging of objects on the basis of their acoustic signal emitted during low-frequency (kHz) vibrations produced by 2 intersecting ultrasound beams at slightly different frequencies. This study tested the feasibility of using vibroacoustography to distinguish between normal and calcified femoral arteries in a pig model. Thirteen normal porcine femoral arteries, 7 with experimentally induced arterial calcifications, and 1 control artery injected with saline only were scanned in vivo. Images were obtained at 45 kHz using a 3 MHz confocal transducer. The acoustic emission signal was detected with a hydrophone placed on the animal's limb. Images were reconstructed on the basis of the amplitude of the acoustic emission signal. Vessel patency, vessel dimensions, and the extent of calcified plaques were confirmed in vivo by angiography and conventional ultrasound. Excised arteries were reexamined with vibroacoustography, X-ray radiography, and histology. In vivo, vibroacoustography produced high-resolution, speckle-free images with a high level of anatomic detail. Measurements of femoral artery diameter were similar by vibroacoustography and conventional ultrasound (mean difference +/- SD, 0.1 +/- 0.4 mm). Calcified plaque area measured by different methods was comparable (vibroacoustography, in vivo: 1.0 +/- 0.9 cm; vibroacoustography in vitro: 1.1 +/- 0.6 cm2; X-ray radiography: 0.9 +/- 0.6 cm2). The reproducibility of measurements was high. Sensitivity and specificity for detecting calcifications were 100% and 86%, respectively, and positive and negative predictive values were 77% and 100%, respectively. Vibroacoustography provides accurate and reproducible measurements of femoral arteries and vascular calcifications in living animals.
ISSN:0020-9996
DOI:10.1097/RLI.0b013e31816085fc