Parametric models for accelerated and long-term survival: a comment on proportional hazards

The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional hazards assumption, even when the departures are not readily detected by commonly used diagnostics. We consider the Gamel–Boag (GB) model, a...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 21; no. 21; pp. 3279 - 3289
Main Authors Frankel, Paul, Longmate, Jeffrey
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 15.11.2002
Wiley
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
DOI10.1002/sim.1273

Cover

Abstract The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional hazards assumption, even when the departures are not readily detected by commonly used diagnostics. We consider the Gamel–Boag (GB) model, a log‐normal model for accelerated failure in which a proportion of subjects are long‐term survivors. When the CPH model is fit to simulated data generated from this model, the results can range from gross overstatement of the effect size, to a situation where increasing follow‐up may cause a decline in power. We implement a fitting algorithm for the GB model that permits separate covariate effects on the rapidity of early failure and the fraction of long‐term survivors. When effects are detected by both the CPH and GB methods, the attribution of the effect to long‐term or short‐term survival may change the interpretation of the data. We believe these examples motivate more frequent use of parametric survival models in conjunction with the semi‐parametric Cox proportional hazards model. Copyright © 2002 John Wiley & Sons, Ltd.
AbstractList The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional hazards assumption, even when the departures are not readily detected by commonly used diagnostics. We consider the Gamel-Boag (GB) model, a log-normal model for accelerated failure in which a proportion of subjects are long-term survivors. When the CPH model is fit to simulated data generated from this model, the results can range from gross overstatement of the effect size, to a situation where increasing follow-up may cause a decline in power. We implement a fitting algorithm for the GB model that permits separate covariate effects on the rapidity of early failure and the fraction of long-term survivors. When effects are detected by both the CPH and GB methods, the attribution of the effect to long-term or short-term survival may change the interpretation of the data. We believe these examples motivate more frequent use of parametric survival models in conjunction with the semi-parametric Cox proportional hazards model.The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional hazards assumption, even when the departures are not readily detected by commonly used diagnostics. We consider the Gamel-Boag (GB) model, a log-normal model for accelerated failure in which a proportion of subjects are long-term survivors. When the CPH model is fit to simulated data generated from this model, the results can range from gross overstatement of the effect size, to a situation where increasing follow-up may cause a decline in power. We implement a fitting algorithm for the GB model that permits separate covariate effects on the rapidity of early failure and the fraction of long-term survivors. When effects are detected by both the CPH and GB methods, the attribution of the effect to long-term or short-term survival may change the interpretation of the data. We believe these examples motivate more frequent use of parametric survival models in conjunction with the semi-parametric Cox proportional hazards model.
The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional hazards assumption, even when the departures are not readily detected by commonly used diagnostics. We consider the Gamel–Boag (GB) model, a log‐normal model for accelerated failure in which a proportion of subjects are long‐term survivors. When the CPH model is fit to simulated data generated from this model, the results can range from gross overstatement of the effect size, to a situation where increasing follow‐up may cause a decline in power. We implement a fitting algorithm for the GB model that permits separate covariate effects on the rapidity of early failure and the fraction of long‐term survivors. When effects are detected by both the CPH and GB methods, the attribution of the effect to long‐term or short‐term survival may change the interpretation of the data. We believe these examples motivate more frequent use of parametric survival models in conjunction with the semi‐parametric Cox proportional hazards model. Copyright © 2002 John Wiley & Sons, Ltd.
The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional hazards assumption, even when the departures are not readily detected by commonly used diagnostics. We consider the Gamel-Boag (GB) model, a log-normal model for accelerated failure in which a proportion of subjects are long-term survivors. When the CPH model is fit to simulated data generated from this model, the results can range from gross overstatement of the effect size, to a situation where increasing follow-up may cause a decline in power. We implement a fitting algorithm for the GB model that permits separate covariate effects on the rapidity of early failure and the fraction of long-term survivors. When effects are detected by both the CPH and GB methods, the attribution of the effect to long-term or short-term survival may change the interpretation of the data. We believe these examples motivate more frequent use of parametric survival models in conjunction with the semi-parametric Cox proportional hazards model.
Author Frankel, Paul
Longmate, Jeffrey
Author_xml – sequence: 1
  givenname: Paul
  surname: Frankel
  fullname: Frankel, Paul
  organization: Department of Biostatistics, City of Hope National Medical Center, Duarte, California, U.S.A
– sequence: 2
  givenname: Jeffrey
  surname: Longmate
  fullname: Longmate, Jeffrey
  organization: Department of Biostatistics, City of Hope National Medical Center, Duarte, California, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13986809$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12375304$$D View this record in MEDLINE/PubMed
BookMark eNp10ctuEzEUBmALFdG0IPEEyBsQmwm-xPYMO1TRUqncBIgFC-uMxwaDL8GeFMrT4yihCBArb77z6z8-R-gg5WQRukvJkhLCHlUfl5QpfgMtKBlUR5joD9CCMKU6qag4REe1fiaEUsHULXRIGVeCk9UCfXgFBaKdizc45smGil0uGIyxwRaY7YQhTTjk9LGbbYm4bsqlv4TwGAM2OUabZpwTXpe8zmX2OUHAn-AHlKneRjcdhGrv7N9j9O706duTZ93Fy7PzkycXnVkJyjs7GiN6KyWVSrW2UoGZzMCJ4UYMzCnqRuq4laR30-AkkH4cXT-MCthAR8GP0YNdbivxdWPrrKOvrX-AZPOmasWolCvOGry3h5sx2kmvi49QrvSv72jg_h5ANRBcgWR8_e340MueDM0td86UXGuxThs_w3b7uYAPmhK9vYtud9Hbu7SBh38NXGf-S7sd_eaDvfqv02_On__pfZ3t92sP5YuWqu2l37840_RUqdVr0TL4Tx6Tqq4
CitedBy_id crossref_primary_10_4236_ijcm_2020_115032
crossref_primary_10_12936_tenrikiyo_14_011
crossref_primary_10_12936_tenrikiyo_15_91
crossref_primary_10_1056_NEJM200307313490516
crossref_primary_10_1016_j_cct_2006_10_006
crossref_primary_10_1016_j_suronc_2010_01_004
crossref_primary_10_1371_journal_pone_0315928
crossref_primary_10_12936_tenrikiyo_12_002
crossref_primary_10_12936_tenrikiyo_16_017
crossref_primary_10_4236_abcr_2013_24020
crossref_primary_10_1111_anzs_12023
crossref_primary_10_12936_tenrikiyo_13_009
crossref_primary_10_1016_j_suronc_2010_03_002
crossref_primary_10_1186_1471_2407_7_31
Cites_doi 10.1080/01621459.1987.10478435
10.1002/(SICI)1097-0258(20000330)19:6<763::AID-SIM517>3.0.CO;2-8
10.1093/biomet/64.1.43
10.1002/1097-0142(19930815)72:4<1219::AID-CNCR2820720414>3.0.CO;2-0
10.1038/bjc.1993.498
10.1016/0895-4356(91)90262-8
10.2307/2290258
10.1093/biomet/69.3.553
10.1038/bjc.1965.83
10.1038/bjc.1993.196
10.2307/2531155
10.1002/sim.987
10.1038/bjc.1993.296
10.1002/(SICI)1097-0258(20000330)19:6<767::AID-SIM518>3.0.CO;2-U
10.1002/1097-0142(19930401)71:7<2299::AID-CNCR2820710721>3.0.CO;2-G
10.1200/JCO.1998.16.3.1030
10.1002/sim.4780110710
10.1111/j.2517-6161.1972.tb00899.x
10.1002/(SICI)1097-0258(19970730)16:14<1629::AID-SIM594>3.0.CO;2-C
10.1006/cbmr.1994.1014
10.2307/2532741
10.1007/s10434-000-0416-z
10.1093/biomet/74.2.289
10.1038/156463a0
10.1214/ss/1177010394
10.1111/j.2517-6161.1949.tb00020.x
10.1002/1097-0142(19941101)74:9<2483::AID-CNCR2820740915>3.0.CO;2-3
10.2307/2531492
10.1002/sim.4780030208
10.1200/JCO.1998.16.8.2693
10.1016/0021-9681(85)90022-0
10.2307/2529885
10.1002/(SICI)1097-0258(20000330)19:6<781::AID-SIM519>3.0.CO;2-6
10.1007/978-1-4899-2819-1
ContentType Journal Article
Copyright Copyright © 2002 John Wiley & Sons, Ltd.
2003 INIST-CNRS
Copyright 2002 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2002 John Wiley & Sons, Ltd.
– notice: 2003 INIST-CNRS
– notice: Copyright 2002 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/sim.1273
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3289
ExternalDocumentID 12375304
13986809
10_1002_sim_1273
SIM1273
ark_67375_WNG_1F774Q50_1
Genre article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIH
  funderid: CA‐63265; CA‐33572
– fundername: The City of Hope National Medical Center
– fundername: NCI NIH HHS
  grantid: CA-33572
– fundername: NCI NIH HHS
  grantid: CA-63265
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WOW
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
YHZ
ZGI
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
ABEML
ACSCC
AGHNM
DUUFO
EBD
EMOBN
HF~
IQODW
M67
RIWAO
RJQFR
RYL
SAMSI
SV3
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4513-ebcc58e66167767167acdc930c3c592f71fb1f3e608fd9f6a08bbf89b7a291b53
IEDL.DBID DR2
ISSN 0277-6715
IngestDate Fri Jul 11 06:05:23 EDT 2025
Wed Feb 19 01:34:16 EST 2025
Wed Apr 02 07:33:45 EDT 2025
Tue Jul 01 04:32:52 EDT 2025
Thu Apr 24 23:00:36 EDT 2025
Wed Jan 22 16:22:00 EST 2025
Wed Oct 30 09:56:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright 2002 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4513-ebcc58e66167767167acdc930c3c592f71fb1f3e608fd9f6a08bbf89b7a291b53
Notes istex:8146895C2471AC3416D1A718FB6B67080565FF79
ark:/67375/WNG-1F774Q50-1
The City of Hope National Medical Center
ArticleID:SIM1273
NIH - No. CA-63265; No. CA-33572
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 12375304
PQID 72166432
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_72166432
pubmed_primary_12375304
pascalfrancis_primary_13986809
crossref_citationtrail_10_1002_sim_1273
crossref_primary_10_1002_sim_1273
wiley_primary_10_1002_sim_1273_SIM1273
istex_primary_ark_67375_WNG_1F774Q50_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 November 2002
PublicationDateYYYYMMDD 2002-11-15
PublicationDate_xml – month: 11
  year: 2002
  text: 15 November 2002
  day: 15
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Elmont, NY
– name: Chichester
– name: England
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2002
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Farewell VT. A model for a binary variable with time-censored observations. Biometrika 1977; 64:43-46.
Gamel JW, Vogel RL. Comparison of parametric and non-parametric survival methods using simulated clinical data. Statistics in Medicine 1997; 16:1629-1643.
Pepe MS, Fleming TR. Weighted Kaplan-Meier statistics: a class of distance tests for censored survival data. Biometrics 1989; 45:497-507.
Moyé LA. Alpha calculus in clinical trials: considerations and commentary for the new millennium. Statistics in Medicine 2000; 19:767-779.
Harrington DP, Fleming TR. A class of rank test procedures for censored survival data. Biometrika 1982; 693:553-566.
Gamel JW, Meyer JS, Province MA. Proliferative rate by S-phase measurement may affect cure of breast carcinoma. Cancer 1995; 76(6):1010-1018.
Edwards MJ, Gamel JW, Feuer EJ. Improvement in the prognosis of Breast cancer from 1965 to 1984. Journal of Clinical Oncology 1998; 16(3):1030-1035.
Sposto R. Cure model analysis in cancer: an application to data from the Children's Cancer Group. Statistics in Medicine 2002; 21:293-312.
Berg JW. The distribution of cancer deaths in time. A survey test of the lognormal model. British Journal of Cancer 1965; 19:695-711.
Gill R, Schuacher M. A simple test of the proportional hazards assumption. Biometrika 1987; 74:289-300.
Reid N. A conversation with Sir David Cox. Statistical Science 1994; 9(3):439-455.
Gamel JW, Vogel RL, Valagussa P, Bonadonna G. Parametric survival analysis of adjuvant therapy for stage II breast cancer. Cancer 1994; 74:2483-2490.
Gamel JW, Vogel RL, McLean IW. Assessing the impact of adjuvant therapy on cure rate for stage 2 breast carcinoma. British Journal of Cancer 1993; 68:115-118.
Feuer EJ, Kessler LG, Baker SG, Triolo HE, Green DT. The impact of breakthrough clinical trials on survival in population based tumor registries. Journal of Clinical Epidemiology 1991; 44:141-153.
Gamel JW, McLean IW. A stable, multivariate extension of the log-normal survival model. Computers and Biomedical Research 1994; 27:148-155.
Cantor A. Extending SAS Survival Analysis: Techniques for Medical Research. SAS Institute: Cary, N.C., 1997.
Boag JW. Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society, Series B 1949; 11:15-50.
McCready DR, Chapman JA, Hanna WM, Kahn HJ, Murray D, Fish EB, Trudeau ME, Andrulis IL, Lickley HL. Factors affecting distant disease-free survival for primary invasive breast cancer: use of a log-normal survival model. Annals of Surgical Oncology 2000; 7(6):416-426.
Gamel JW, Jones AS. Squamous carcinoma of the head and neck: cured fraction and median survival time as functions of age, sex, histologic type, and node status. British Journal of Cancer 1993; 67:1071-1075.
Yamaguchi K. Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of 'permanent employment' in Japan. Journal of the American Statistical Association 1992; 87:284-292.
Fleming TR, Harrington DP, O'Sullivan, M. Supremum versions of the log-rank and generalized Wilcoxon statistics. Journal of the American Statistical Association 1987; 82 397:312-320.
SAS/STAT User's Guide,Version 8, Volume 3. SAS Institute Inc.: Cary, N.C., 1999; 2576.
Gamel JW, McLean IW, McCurdy JB. Biologic distinctions between cure and time to death in 2892 patients with intraocular melanoma. Cancer 1993; 71:22299-22305.
Goldman A. Survivorship analysis when cure is a possibility: a Monte Carlo study. Statistics in Medicine 1984; 3:153-163.
D'Agostino RB. Editorial: controlling alpha in a clinical trial: the case for secondary endpoints. Statistics in Medicine 2000; 19:763-766.
Koch GG. Discussion for 'Alpha calculus in clinical trials: considerations and commentary for the new millennium'. Statistics in Medicine 2000; 19:781-785.
Gamel JW, Vogel RL. A model of long-term survival following adjuvant therapy for stage 2 breast cancer. British Journal of Cancer 1993; 68:1167-1170.
Sposto R, Sather HN. Determining the duration of comparative clinical trials while allowing for cure. Journal of Chronic Disease 1985; 38(8):683-690.
Gamel JW, George SL, Stanley WE, Seigler HF. Skin melanoma: cured fraction and survival time as functions of thickness, site, histologic type, age and sex. Cancer 1993; 72:1219-1223.
Edwards MJ, Gamel JW, Vaughan WP, Wrightson WR. Infiltrating ductal carcinoma of the breast: the survival impact of race. Journal of Clinical Oncology 1998; 16(8):2693-2699.
Farewell VT. The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 1982; 38:1041-1046.
Breslow NE, Edler L, Berger J. A two-sample censored-data rank for acceleration. Biometrics 1984; 40:1049-1062.
Sposto R, Sather HN, Baker SA. A comparison of tests of difference in proportion of patients who are cured. Biometrics 1992; 48:87-99.
Allison PD. Survival Analysis Using the SAS System: A Practical Guide. SAS Institute: Cary, N.C., 1997.
Gaddum JH. Lognormal distributions. Nature 1945; 156:463.
Boag JW. The presentation and analysis of the results of radiotherapy. British Journal of Radiology 1948; 21 Pt I: 128, PtII:189.
Cantor A, Shuster JJ. Parametric versus non-parametric methods for estimating cure rates based on censored survival data. Statistics in Medicine 1992; 11:931-937.
Cox DR. Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B 1972; 24:187-200.
1984; 40
1993; 68
1993; 67
1982; 38
1949; 11
1989; 45
1987; 74
1995; 76
2000; 7
1997
1977; 64
1994; 27
1994
1999; 3
1972; 24
1992; 11
1945; 156
1965; 19
1999
1998; 16
1994; 9
2000; 19
1990
1987; 82
1993; 72
1984; 3
1993; 71
1991; 44
2002; 21
1997; 16
1982; 693
1992; 48
1948; 21
1992; 87
1994; 74
1985; 38
Fleming TR (e_1_2_1_40_2) 1987; 82
(e_1_2_1_33_2) 1999
Gamel JW (e_1_2_1_14_2) 1995; 76
Cox DR (e_1_2_1_2_2) 1972; 24
Cantor A (e_1_2_1_32_2) 1997
e_1_2_1_41_2
Boag JW (e_1_2_1_5_2) 1949; 11
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_43_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
Allison PD (e_1_2_1_31_2) 1997
Boag JW (e_1_2_1_4_2) 1948; 21
Edwards MJ (e_1_2_1_15_2) 1998; 16
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_10_2
e_1_2_1_38_2
Edwards MJ (e_1_2_1_16_2) 1998; 16
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_36_2
Cox DR (e_1_2_1_30_2) 1994
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
e_1_2_1_39_2
References_xml – reference: Gamel JW, George SL, Stanley WE, Seigler HF. Skin melanoma: cured fraction and survival time as functions of thickness, site, histologic type, age and sex. Cancer 1993; 72:1219-1223.
– reference: Fleming TR, Harrington DP, O'Sullivan, M. Supremum versions of the log-rank and generalized Wilcoxon statistics. Journal of the American Statistical Association 1987; 82 397:312-320.
– reference: Cantor A. Extending SAS Survival Analysis: Techniques for Medical Research. SAS Institute: Cary, N.C., 1997.
– reference: Yamaguchi K. Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of 'permanent employment' in Japan. Journal of the American Statistical Association 1992; 87:284-292.
– reference: Koch GG. Discussion for 'Alpha calculus in clinical trials: considerations and commentary for the new millennium'. Statistics in Medicine 2000; 19:781-785.
– reference: Boag JW. The presentation and analysis of the results of radiotherapy. British Journal of Radiology 1948; 21 Pt I: 128, PtII:189.
– reference: Cox DR. Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B 1972; 24:187-200.
– reference: Gamel JW, Meyer JS, Province MA. Proliferative rate by S-phase measurement may affect cure of breast carcinoma. Cancer 1995; 76(6):1010-1018.
– reference: Gamel JW, Vogel RL, McLean IW. Assessing the impact of adjuvant therapy on cure rate for stage 2 breast carcinoma. British Journal of Cancer 1993; 68:115-118.
– reference: Breslow NE, Edler L, Berger J. A two-sample censored-data rank for acceleration. Biometrics 1984; 40:1049-1062.
– reference: Gill R, Schuacher M. A simple test of the proportional hazards assumption. Biometrika 1987; 74:289-300.
– reference: Edwards MJ, Gamel JW, Vaughan WP, Wrightson WR. Infiltrating ductal carcinoma of the breast: the survival impact of race. Journal of Clinical Oncology 1998; 16(8):2693-2699.
– reference: Gamel JW, Vogel RL. Comparison of parametric and non-parametric survival methods using simulated clinical data. Statistics in Medicine 1997; 16:1629-1643.
– reference: Gamel JW, McLean IW. A stable, multivariate extension of the log-normal survival model. Computers and Biomedical Research 1994; 27:148-155.
– reference: McCready DR, Chapman JA, Hanna WM, Kahn HJ, Murray D, Fish EB, Trudeau ME, Andrulis IL, Lickley HL. Factors affecting distant disease-free survival for primary invasive breast cancer: use of a log-normal survival model. Annals of Surgical Oncology 2000; 7(6):416-426.
– reference: Harrington DP, Fleming TR. A class of rank test procedures for censored survival data. Biometrika 1982; 693:553-566.
– reference: Farewell VT. The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 1982; 38:1041-1046.
– reference: Gamel JW, Vogel RL, Valagussa P, Bonadonna G. Parametric survival analysis of adjuvant therapy for stage II breast cancer. Cancer 1994; 74:2483-2490.
– reference: D'Agostino RB. Editorial: controlling alpha in a clinical trial: the case for secondary endpoints. Statistics in Medicine 2000; 19:763-766.
– reference: Gaddum JH. Lognormal distributions. Nature 1945; 156:463.
– reference: Moyé LA. Alpha calculus in clinical trials: considerations and commentary for the new millennium. Statistics in Medicine 2000; 19:767-779.
– reference: Pepe MS, Fleming TR. Weighted Kaplan-Meier statistics: a class of distance tests for censored survival data. Biometrics 1989; 45:497-507.
– reference: Gamel JW, Vogel RL. A model of long-term survival following adjuvant therapy for stage 2 breast cancer. British Journal of Cancer 1993; 68:1167-1170.
– reference: SAS/STAT User's Guide,Version 8, Volume 3. SAS Institute Inc.: Cary, N.C., 1999; 2576.
– reference: Feuer EJ, Kessler LG, Baker SG, Triolo HE, Green DT. The impact of breakthrough clinical trials on survival in population based tumor registries. Journal of Clinical Epidemiology 1991; 44:141-153.
– reference: Gamel JW, McLean IW, McCurdy JB. Biologic distinctions between cure and time to death in 2892 patients with intraocular melanoma. Cancer 1993; 71:22299-22305.
– reference: Sposto R, Sather HN. Determining the duration of comparative clinical trials while allowing for cure. Journal of Chronic Disease 1985; 38(8):683-690.
– reference: Allison PD. Survival Analysis Using the SAS System: A Practical Guide. SAS Institute: Cary, N.C., 1997.
– reference: Edwards MJ, Gamel JW, Feuer EJ. Improvement in the prognosis of Breast cancer from 1965 to 1984. Journal of Clinical Oncology 1998; 16(3):1030-1035.
– reference: Farewell VT. A model for a binary variable with time-censored observations. Biometrika 1977; 64:43-46.
– reference: Gamel JW, Jones AS. Squamous carcinoma of the head and neck: cured fraction and median survival time as functions of age, sex, histologic type, and node status. British Journal of Cancer 1993; 67:1071-1075.
– reference: Goldman A. Survivorship analysis when cure is a possibility: a Monte Carlo study. Statistics in Medicine 1984; 3:153-163.
– reference: Reid N. A conversation with Sir David Cox. Statistical Science 1994; 9(3):439-455.
– reference: Berg JW. The distribution of cancer deaths in time. A survey test of the lognormal model. British Journal of Cancer 1965; 19:695-711.
– reference: Sposto R, Sather HN, Baker SA. A comparison of tests of difference in proportion of patients who are cured. Biometrics 1992; 48:87-99.
– reference: Sposto R. Cure model analysis in cancer: an application to data from the Children's Cancer Group. Statistics in Medicine 2002; 21:293-312.
– reference: Cantor A, Shuster JJ. Parametric versus non-parametric methods for estimating cure rates based on censored survival data. Statistics in Medicine 1992; 11:931-937.
– reference: Boag JW. Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society, Series B 1949; 11:15-50.
– volume: 72
  start-page: 1219
  year: 1993
  end-page: 1223
  article-title: Skin melanoma: cured fraction and survival time as functions of thickness, site, histologic type, age and sex
  publication-title: Cancer
– volume: 44
  start-page: 141
  year: 1991
  end-page: 153
  article-title: The impact of breakthrough clinical trials on survival in population based tumor registries
  publication-title: Journal of Clinical Epidemiology
– volume: 19
  start-page: 763
  year: 2000
  end-page: 766
  article-title: Editorial: controlling alpha in a clinical trial: the case for secondary endpoints
  publication-title: Statistics in Medicine
– volume: 24
  start-page: 187
  year: 1972
  end-page: 200
  article-title: Regression models and life tables (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 21
  start-page: 293
  year: 2002
  end-page: 312
  article-title: Cure model analysis in cancer: an application to data from the Children's Cancer Group
  publication-title: Statistics in Medicine
– volume: 19
  start-page: 781
  year: 2000
  end-page: 785
  article-title: Discussion for ‘Alpha calculus in clinical trials: considerations and commentary for the new millennium’
  publication-title: Statistics in Medicine
– volume: 16
  start-page: 1629
  year: 1997
  end-page: 1643
  article-title: Comparison of parametric and non‐parametric survival methods using simulated clinical data
  publication-title: Statistics in Medicine
– volume: 48
  start-page: 87
  year: 1992
  end-page: 99
  article-title: A comparison of tests of difference in proportion of patients who are cured
  publication-title: Biometrics
– volume: 11
  start-page: 931
  year: 1992
  end-page: 937
  article-title: Parametric versus non‐parametric methods for estimating cure rates based on censored survival data
  publication-title: Statistics in Medicine
– volume: 64
  start-page: 43
  year: 1977
  end-page: 46
  article-title: A model for a binary variable with time‐censored observations
  publication-title: Biometrika
– volume: 156
  start-page: 463
  year: 1945
  article-title: Lognormal distributions
  publication-title: Nature
– volume: 67
  start-page: 1071
  year: 1993
  end-page: 1075
  article-title: Squamous carcinoma of the head and neck: cured fraction and median survival time as functions of age, sex, histologic type, and node status
  publication-title: British Journal of Cancer
– volume: 71
  start-page: 22299
  year: 1993
  end-page: 22305
  article-title: Biologic distinctions between cure and time to death in 2892 patients with intraocular melanoma
  publication-title: Cancer
– volume: 68
  start-page: 115
  year: 1993
  end-page: 118
  article-title: Assessing the impact of adjuvant therapy on cure rate for stage 2 breast carcinoma
  publication-title: British Journal of Cancer
– volume: 16
  start-page: 2693
  issue: 8
  year: 1998
  end-page: 2699
  article-title: Infiltrating ductal carcinoma of the breast: the survival impact of race
  publication-title: Journal of Clinical Oncology
– year: 1990
– volume: 19
  start-page: 767
  year: 2000
  end-page: 779
  article-title: Alpha calculus in clinical trials: considerations and commentary for the new millennium
  publication-title: Statistics in Medicine
– volume: 38
  start-page: 1041
  year: 1982
  end-page: 1046
  article-title: The use of mixture models for the analysis of survival data with long‐term survivors
  publication-title: Biometrics
– volume: 3
  start-page: 2576
  year: 1999
– volume: 21
  year: 1948
  article-title: The presentation and analysis of the results of radiotherapy
  publication-title: British Journal of Radiology
– volume: 19
  start-page: 695
  year: 1965
  end-page: 711
  article-title: The distribution of cancer deaths in time. A survey test of the lognormal model
  publication-title: British Journal of Cancer
– volume: 74
  start-page: 289
  year: 1987
  end-page: 300
  article-title: A simple test of the proportional hazards assumption
  publication-title: Biometrika
– volume: 693
  start-page: 553
  year: 1982
  end-page: 566
  article-title: A class of rank test procedures for censored survival data
  publication-title: Biometrika
– volume: 3
  start-page: 153
  year: 1984
  end-page: 163
  article-title: Survivorship analysis when cure is a possibility: a Monte Carlo study
  publication-title: Statistics in Medicine
– volume: 27
  start-page: 148
  year: 1994
  end-page: 155
  article-title: A stable, multivariate extension of the log‐normal survival model
  publication-title: Computers and Biomedical Research
– volume: 7
  start-page: 416
  issue: 6
  year: 2000
  end-page: 426
  article-title: Factors affecting distant disease‐free survival for primary invasive breast cancer: use of a log‐normal survival model
  publication-title: Annals of Surgical Oncology
– start-page: 21
  year: 1994
– volume: 40
  start-page: 1049
  year: 1984
  end-page: 1062
  article-title: A two‐sample censored‐data rank for acceleration
  publication-title: Biometrics
– year: 1997
– volume: 9
  start-page: 439
  issue: 3
  year: 1994
  end-page: 455
  article-title: A conversation with Sir David Cox
  publication-title: Statistical Science
– volume: 38
  start-page: 683
  issue: 8
  year: 1985
  end-page: 690
  article-title: Determining the duration of comparative clinical trials while allowing for cure
  publication-title: Journal of Chronic Disease
– volume: 76
  start-page: 1010
  issue: 6
  year: 1995
  end-page: 1018
  article-title: Proliferative rate by S‐phase measurement may affect cure of breast carcinoma
  publication-title: Cancer
– volume: 87
  start-page: 284
  year: 1992
  end-page: 292
  article-title: Accelerated failure‐time regression models with a regression model of surviving fraction: an application to the analysis of ‘permanent employment’ in Japan
  publication-title: Journal of the American Statistical Association
– volume: 74
  start-page: 2483
  year: 1994
  end-page: 2490
  article-title: Parametric survival analysis of adjuvant therapy for stage II breast cancer
  publication-title: Cancer
– volume: 16
  start-page: 1030
  issue: 3
  year: 1998
  end-page: 1035
  article-title: Improvement in the prognosis of Breast cancer from 1965 to 1984
  publication-title: Journal of Clinical Oncology
– volume: 45
  start-page: 497
  year: 1989
  end-page: 507
  article-title: Weighted Kaplan‐Meier statistics: a class of distance tests for censored survival data
  publication-title: Biometrics
– volume: 11
  start-page: 15
  year: 1949
  end-page: 50
  article-title: Maximum likelihood estimates of the proportion of patients cured by cancer therapy
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 68
  start-page: 1167
  year: 1993
  end-page: 1170
  article-title: A model of long‐term survival following adjuvant therapy for stage 2 breast cancer
  publication-title: British Journal of Cancer
– year: 1999
– volume: 82
  start-page: 312
  issue: 397
  year: 1987
  end-page: 320
  article-title: Supremum versions of the log‐rank and generalized Wilcoxon statistics
  publication-title: Journal of the American Statistical Association
– volume: 82
  start-page: 312
  issue: 397
  year: 1987
  ident: e_1_2_1_40_2
  article-title: Supremum versions of the log‐rank and generalized Wilcoxon statistics
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1987.10478435
– ident: e_1_2_1_36_2
  doi: 10.1002/(SICI)1097-0258(20000330)19:6<763::AID-SIM517>3.0.CO;2-8
– ident: e_1_2_1_22_2
  doi: 10.1093/biomet/64.1.43
– ident: e_1_2_1_11_2
  doi: 10.1002/1097-0142(19930815)72:4<1219::AID-CNCR2820720414>3.0.CO;2-0
– ident: e_1_2_1_12_2
  doi: 10.1038/bjc.1993.498
– volume-title: Extending SAS Survival Analysis: Techniques for Medical Research
  year: 1997
  ident: e_1_2_1_32_2
– volume: 76
  start-page: 1010
  issue: 6
  year: 1995
  ident: e_1_2_1_14_2
  article-title: Proliferative rate by S‐phase measurement may affect cure of breast carcinoma
  publication-title: Cancer
– ident: e_1_2_1_28_2
  doi: 10.1016/0895-4356(91)90262-8
– ident: e_1_2_1_23_2
  doi: 10.2307/2290258
– ident: e_1_2_1_41_2
  doi: 10.1093/biomet/69.3.553
– ident: e_1_2_1_3_2
– ident: e_1_2_1_26_2
  doi: 10.1038/bjc.1965.83
– ident: e_1_2_1_35_2
  doi: 10.1038/bjc.1993.196
– start-page: 21
  volume-title: Monographs on Statistics and Applied Probability
  year: 1994
  ident: e_1_2_1_30_2
– ident: e_1_2_1_42_2
  doi: 10.2307/2531155
– ident: e_1_2_1_8_2
  doi: 10.1002/sim.987
– ident: e_1_2_1_13_2
  doi: 10.1038/bjc.1993.296
– ident: e_1_2_1_37_2
  doi: 10.1002/(SICI)1097-0258(20000330)19:6<767::AID-SIM518>3.0.CO;2-U
– start-page: 2576
  volume-title: SAS/STAT User's Guide,Version 8
  year: 1999
  ident: e_1_2_1_33_2
– ident: e_1_2_1_9_2
  doi: 10.1002/1097-0142(19930401)71:7<2299::AID-CNCR2820710721>3.0.CO;2-G
– volume: 16
  start-page: 1030
  issue: 3
  year: 1998
  ident: e_1_2_1_15_2
  article-title: Improvement in the prognosis of Breast cancer from 1965 to 1984
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.1998.16.3.1030
– ident: e_1_2_1_17_2
  doi: 10.1002/sim.4780110710
– volume: 24
  start-page: 187
  year: 1972
  ident: e_1_2_1_2_2
  article-title: Regression models and life tables (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: e_1_2_1_29_2
  doi: 10.1002/(SICI)1097-0258(19970730)16:14<1629::AID-SIM594>3.0.CO;2-C
– ident: e_1_2_1_7_2
  doi: 10.1006/cbmr.1994.1014
– ident: e_1_2_1_19_2
  doi: 10.2307/2532741
– volume-title: Survival Analysis Using the SAS System: A Practical Guide
  year: 1997
  ident: e_1_2_1_31_2
– ident: e_1_2_1_25_2
  doi: 10.1007/s10434-000-0416-z
– ident: e_1_2_1_34_2
  doi: 10.1093/biomet/74.2.289
– ident: e_1_2_1_10_2
  doi: 10.1038/bjc.1993.196
– ident: e_1_2_1_24_2
  doi: 10.1038/156463a0
– ident: e_1_2_1_43_2
  doi: 10.1214/ss/1177010394
– volume: 11
  start-page: 15
  year: 1949
  ident: e_1_2_1_5_2
  article-title: Maximum likelihood estimates of the proportion of patients cured by cancer therapy
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1949.tb00020.x
– ident: e_1_2_1_6_2
  doi: 10.1002/1097-0142(19941101)74:9<2483::AID-CNCR2820740915>3.0.CO;2-3
– ident: e_1_2_1_39_2
  doi: 10.2307/2531492
– ident: e_1_2_1_20_2
  doi: 10.1002/sim.4780030208
– volume: 16
  start-page: 2693
  issue: 8
  year: 1998
  ident: e_1_2_1_16_2
  article-title: Infiltrating ductal carcinoma of the breast: the survival impact of race
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.1998.16.8.2693
– ident: e_1_2_1_18_2
  doi: 10.1016/0021-9681(85)90022-0
– volume: 21
  year: 1948
  ident: e_1_2_1_4_2
  article-title: The presentation and analysis of the results of radiotherapy
  publication-title: British Journal of Radiology
– ident: e_1_2_1_21_2
  doi: 10.2307/2529885
– ident: e_1_2_1_38_2
  doi: 10.1002/(SICI)1097-0258(20000330)19:6<781::AID-SIM519>3.0.CO;2-6
– ident: e_1_2_1_27_2
  doi: 10.1007/978-1-4899-2819-1
SSID ssj0011527
Score 1.7483813
Snippet The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3279
SubjectTerms accelerated failure
Algorithms
Biological and medical sciences
Bone Marrow Transplantation
cure model
Humans
Leukemia, Myeloid, Acute - therapy
log-normal
Medical sciences
proportional hazards
Proportional Hazards Models
Survival Analysis
Title Parametric models for accelerated and long-term survival: a comment on proportional hazards
URI https://api.istex.fr/ark:/67375/WNG-1F774Q50-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.1273
https://www.ncbi.nlm.nih.gov/pubmed/12375304
https://www.proquest.com/docview/72166432
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkVAlxGN5pYViJASnbOM4dmJuCFgK0la8KiqhKrIdm1Zts9VmV6p64ifwG_klzMTJrhYVCXFJLnbiTObl8cw3hDxNjAarDttUrioZZyJxMVg5H3spleBGGyWwdni8K3f2svf7Yr_LqsRamIAPsQi4oWS0-hoFXJtmewka2hydDhkYX1C_jEuEzX_9aYEcxfpurXhCKXMmetzZJN3uJ65YoqtI1HPMjNQNEMeHrhaXuZ2rXmxrhkY3ybf-A0L2yfFwPjNDe_EHtuP_feEtcqPzTunLwE63yRVXD8i1cXf-PiDXQ5SPhuKlAVlHXzVAPd8hBx80Znoh5D9tG-w0FDxiqq0F04aIFBXVdUVPJvX3Xz9-okmgzRw0FfD6C6oprA4jlXRS0zNs3TANUUp6qC-wMOwu2Ru9-fJqJ-66N8Q2E4zHzlgrCgf2XyJiEFy1raziieVWqNTnzBvmuZNJ4SvlpU4KY3yhTK5TxYzg98haPandA0IL5VjKXMJBPWXcphr2Xc7L1GQ517nVEXne_8nSdtDm2GHjpAygzGkJpCyRlBF5shh5FuA8LhnzrGWGxQA9Pcb0t1yUX3fflmwEHvNHAZMisrXCLcsnclXIIlERedyzTwlSi0cxunaTeVMiZBL4gmlE7geuWs5N4UU8yWAVLW_8dZnl53djvG_868BNsh5a2bCYiYdkbTadu0fgUc3MVis7vwFxJhyy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVoJKiMfyWh6tkRCcso3jOInhhIBlC90Vj1b0AIpsxwHUkq02uxLqiZ_Ab-SXMBNvdrWoSIhLcrETx5nxfB7PfAPwIDQarTpuU4UqkiCWoQvQypVBmSRKCqONkpQ7PBwlg4P41aE8XIMnbS6M54dYONxIM5r1mhScHNI7S9bQ-uu3Hkfrew42YsQZtPN6_m7BHcXbeq10RpmkXLbMs2G00_ZcsUUbNK3fKTZS1zg9pa9rcRbwXMWxjSHqX4aP7Sf4-JOj3mxqevb0D3bH__zGK3BpDlDZUy9RV2HNVR04P5wfwXfgonf0MZ-_1IFNgque7fkafHqjKdiLWP9ZU2OnZgiKmbYWrRuRUhRMVwU7Hleff_34SVaB1TNcrFDcHzPNcHjkrGTjip1Q9YaJd1SyL_qUcsOuw0H_xf6zQTAv4BDYWHIROGOtzBxCgIRIg_CqbWGVCK2wUkVlykvDS-GSMCsLVSY6zIwpM2VSHSlupLgB69W4creAZcrxiLtQ4AoVCxtp3Hq5MolMnAqdWt2FR-2vzO2c3ZyKbBznnpc5ynEqc5rKLtxftDzxjB5ntHnYSMOigZ4cUQRcKvMPo5c57yNofiuxUxe2VsRl-UShsiQLVRe2W_nJUXHpNEZXbjyrc2JNQjgYdeGmF6tl3whfJMIYR9EIx1-Hmb_fHdL99r823IYLg_3hXr63O3p9BzZ9ZRsecHkX1qeTmbuHAGtqthpF-g0rsCDR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BK1WVEMdyLUdrJARP2cZxnMS8IWBpga3KUbUSQpHt2IBasqs9JNQnfgK_kV_CTLzZ1aIiIV6SFzvxMeP5bM98A_AwNhqtOm5ThaqyKJWxi9DK-chnmZLCaKMkxQ4P9rPdw_TVsTyee1VSLEzgh1gcuJFmNOs1Kfio8jtL0tDJ1289jsb3IqynGQIJAkTvFtRRvE3XSleUWc5lSzwbJzttzRVTtE6j-p1cI_UER8eHtBbn4c5VGNvYof4V-Nj2ILifnPRmU9OzZ3-QO_5fF6_C5Tk8ZU-DPF2DC67uwMZgfgHfgUvhmI-F6KUObBJYDVzP1-HTgSZXL-L8Z02GnQlDSMy0tWjbiJKiYrqu2Omw_vzrx0-yCWwyw6UKhf0J0wxbR0eVbFizEeVuGIdjSvZFn1Fk2A047L_48Gw3mqdviGwquYicsVYWDgFARpRB-NS2skrEVlipEp9zb7gXDifPV8pnOi6M8YUyuU4UN1LchLV6WLvbwArleMJdLHB9SoVNNG68nM8Sk-ZC51Z34XE7k6Wdc5tTio3TMrAyJyUOZUlD2YUHi5KjwOdxTplHjTAsCujxCfm_5bI82n9Z8j5C5rcSK3Vha0Vall8UqsiKWHVhuxWfEtWW7mJ07YazSUmcSQgGky7cClK1rJvgj0ScYisa2fhrM8v3ewN63_nXgtuwcfC8X77Z2399FzZDWhsecXkP1qbjmbuP6Gpqtho1-g233x-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+models+for+accelerated+and+long-term+survival%3A+a+comment+on+proportional+hazards&rft.jtitle=Statistics+in+medicine&rft.au=FRANKEL%2C+Paul&rft.au=LONGMATE%2C+Jeffrey&rft.date=2002-11-15&rft.pub=Wiley&rft.issn=0277-6715&rft.volume=21&rft.issue=21&rft.spage=3279&rft.epage=3289&rft_id=info:doi/10.1002%2Fsim.1273&rft.externalDBID=n%2Fa&rft.externalDocID=13986809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon