Parametric models for accelerated and long-term survival: a comment on proportional hazards
The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional hazards assumption, even when the departures are not readily detected by commonly used diagnostics. We consider the Gamel–Boag (GB) model, a...
Saved in:
Published in | Statistics in medicine Vol. 21; no. 21; pp. 3279 - 3289 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
15.11.2002
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 |
DOI | 10.1002/sim.1273 |
Cover
Abstract | The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional hazards assumption, even when the departures are not readily detected by commonly used diagnostics. We consider the Gamel–Boag (GB) model, a log‐normal model for accelerated failure in which a proportion of subjects are long‐term survivors. When the CPH model is fit to simulated data generated from this model, the results can range from gross overstatement of the effect size, to a situation where increasing follow‐up may cause a decline in power. We implement a fitting algorithm for the GB model that permits separate covariate effects on the rapidity of early failure and the fraction of long‐term survivors. When effects are detected by both the CPH and GB methods, the attribution of the effect to long‐term or short‐term survival may change the interpretation of the data. We believe these examples motivate more frequent use of parametric survival models in conjunction with the semi‐parametric Cox proportional hazards model. Copyright © 2002 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional hazards assumption, even when the departures are not readily detected by commonly used diagnostics. We consider the Gamel-Boag (GB) model, a log-normal model for accelerated failure in which a proportion of subjects are long-term survivors. When the CPH model is fit to simulated data generated from this model, the results can range from gross overstatement of the effect size, to a situation where increasing follow-up may cause a decline in power. We implement a fitting algorithm for the GB model that permits separate covariate effects on the rapidity of early failure and the fraction of long-term survivors. When effects are detected by both the CPH and GB methods, the attribution of the effect to long-term or short-term survival may change the interpretation of the data. We believe these examples motivate more frequent use of parametric survival models in conjunction with the semi-parametric Cox proportional hazards model.The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional hazards assumption, even when the departures are not readily detected by commonly used diagnostics. We consider the Gamel-Boag (GB) model, a log-normal model for accelerated failure in which a proportion of subjects are long-term survivors. When the CPH model is fit to simulated data generated from this model, the results can range from gross overstatement of the effect size, to a situation where increasing follow-up may cause a decline in power. We implement a fitting algorithm for the GB model that permits separate covariate effects on the rapidity of early failure and the fraction of long-term survivors. When effects are detected by both the CPH and GB methods, the attribution of the effect to long-term or short-term survival may change the interpretation of the data. We believe these examples motivate more frequent use of parametric survival models in conjunction with the semi-parametric Cox proportional hazards model. The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional hazards assumption, even when the departures are not readily detected by commonly used diagnostics. We consider the Gamel–Boag (GB) model, a log‐normal model for accelerated failure in which a proportion of subjects are long‐term survivors. When the CPH model is fit to simulated data generated from this model, the results can range from gross overstatement of the effect size, to a situation where increasing follow‐up may cause a decline in power. We implement a fitting algorithm for the GB model that permits separate covariate effects on the rapidity of early failure and the fraction of long‐term survivors. When effects are detected by both the CPH and GB methods, the attribution of the effect to long‐term or short‐term survival may change the interpretation of the data. We believe these examples motivate more frequent use of parametric survival models in conjunction with the semi‐parametric Cox proportional hazards model. Copyright © 2002 John Wiley & Sons, Ltd. The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional hazards assumption, even when the departures are not readily detected by commonly used diagnostics. We consider the Gamel-Boag (GB) model, a log-normal model for accelerated failure in which a proportion of subjects are long-term survivors. When the CPH model is fit to simulated data generated from this model, the results can range from gross overstatement of the effect size, to a situation where increasing follow-up may cause a decline in power. We implement a fitting algorithm for the GB model that permits separate covariate effects on the rapidity of early failure and the fraction of long-term survivors. When effects are detected by both the CPH and GB methods, the attribution of the effect to long-term or short-term survival may change the interpretation of the data. We believe these examples motivate more frequent use of parametric survival models in conjunction with the semi-parametric Cox proportional hazards model. |
Author | Frankel, Paul Longmate, Jeffrey |
Author_xml | – sequence: 1 givenname: Paul surname: Frankel fullname: Frankel, Paul organization: Department of Biostatistics, City of Hope National Medical Center, Duarte, California, U.S.A – sequence: 2 givenname: Jeffrey surname: Longmate fullname: Longmate, Jeffrey organization: Department of Biostatistics, City of Hope National Medical Center, Duarte, California, U.S.A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13986809$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12375304$$D View this record in MEDLINE/PubMed |
BookMark | eNp10ctuEzEUBmALFdG0IPEEyBsQmwm-xPYMO1TRUqncBIgFC-uMxwaDL8GeFMrT4yihCBArb77z6z8-R-gg5WQRukvJkhLCHlUfl5QpfgMtKBlUR5joD9CCMKU6qag4REe1fiaEUsHULXRIGVeCk9UCfXgFBaKdizc45smGil0uGIyxwRaY7YQhTTjk9LGbbYm4bsqlv4TwGAM2OUabZpwTXpe8zmX2OUHAn-AHlKneRjcdhGrv7N9j9O706duTZ93Fy7PzkycXnVkJyjs7GiN6KyWVSrW2UoGZzMCJ4UYMzCnqRuq4laR30-AkkH4cXT-MCthAR8GP0YNdbivxdWPrrKOvrX-AZPOmasWolCvOGry3h5sx2kmvi49QrvSv72jg_h5ANRBcgWR8_e340MueDM0td86UXGuxThs_w3b7uYAPmhK9vYtud9Hbu7SBh38NXGf-S7sd_eaDvfqv02_On__pfZ3t92sP5YuWqu2l37840_RUqdVr0TL4Tx6Tqq4 |
CitedBy_id | crossref_primary_10_4236_ijcm_2020_115032 crossref_primary_10_12936_tenrikiyo_14_011 crossref_primary_10_12936_tenrikiyo_15_91 crossref_primary_10_1056_NEJM200307313490516 crossref_primary_10_1016_j_cct_2006_10_006 crossref_primary_10_1016_j_suronc_2010_01_004 crossref_primary_10_1371_journal_pone_0315928 crossref_primary_10_12936_tenrikiyo_12_002 crossref_primary_10_12936_tenrikiyo_16_017 crossref_primary_10_4236_abcr_2013_24020 crossref_primary_10_1111_anzs_12023 crossref_primary_10_12936_tenrikiyo_13_009 crossref_primary_10_1016_j_suronc_2010_03_002 crossref_primary_10_1186_1471_2407_7_31 |
Cites_doi | 10.1080/01621459.1987.10478435 10.1002/(SICI)1097-0258(20000330)19:6<763::AID-SIM517>3.0.CO;2-8 10.1093/biomet/64.1.43 10.1002/1097-0142(19930815)72:4<1219::AID-CNCR2820720414>3.0.CO;2-0 10.1038/bjc.1993.498 10.1016/0895-4356(91)90262-8 10.2307/2290258 10.1093/biomet/69.3.553 10.1038/bjc.1965.83 10.1038/bjc.1993.196 10.2307/2531155 10.1002/sim.987 10.1038/bjc.1993.296 10.1002/(SICI)1097-0258(20000330)19:6<767::AID-SIM518>3.0.CO;2-U 10.1002/1097-0142(19930401)71:7<2299::AID-CNCR2820710721>3.0.CO;2-G 10.1200/JCO.1998.16.3.1030 10.1002/sim.4780110710 10.1111/j.2517-6161.1972.tb00899.x 10.1002/(SICI)1097-0258(19970730)16:14<1629::AID-SIM594>3.0.CO;2-C 10.1006/cbmr.1994.1014 10.2307/2532741 10.1007/s10434-000-0416-z 10.1093/biomet/74.2.289 10.1038/156463a0 10.1214/ss/1177010394 10.1111/j.2517-6161.1949.tb00020.x 10.1002/1097-0142(19941101)74:9<2483::AID-CNCR2820740915>3.0.CO;2-3 10.2307/2531492 10.1002/sim.4780030208 10.1200/JCO.1998.16.8.2693 10.1016/0021-9681(85)90022-0 10.2307/2529885 10.1002/(SICI)1097-0258(20000330)19:6<781::AID-SIM519>3.0.CO;2-6 10.1007/978-1-4899-2819-1 |
ContentType | Journal Article |
Copyright | Copyright © 2002 John Wiley & Sons, Ltd. 2003 INIST-CNRS Copyright 2002 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2002 John Wiley & Sons, Ltd. – notice: 2003 INIST-CNRS – notice: Copyright 2002 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/sim.1273 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 3289 |
ExternalDocumentID | 12375304 13986809 10_1002_sim_1273 SIM1273 ark_67375_WNG_1F774Q50_1 |
Genre | article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIH funderid: CA‐63265; CA‐33572 – fundername: The City of Hope National Medical Center – fundername: NCI NIH HHS grantid: CA-33572 – fundername: NCI NIH HHS grantid: CA-63265 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD EX3 F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WOW WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 YHZ ZGI ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION ABEML ACSCC AGHNM DUUFO EBD EMOBN HF~ IQODW M67 RIWAO RJQFR RYL SAMSI SV3 ZXP CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c4513-ebcc58e66167767167acdc930c3c592f71fb1f3e608fd9f6a08bbf89b7a291b53 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 |
IngestDate | Fri Jul 11 06:05:23 EDT 2025 Wed Feb 19 01:34:16 EST 2025 Wed Apr 02 07:33:45 EDT 2025 Tue Jul 01 04:32:52 EDT 2025 Thu Apr 24 23:00:36 EDT 2025 Wed Jan 22 16:22:00 EST 2025 Wed Oct 30 09:56:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2002 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4513-ebcc58e66167767167acdc930c3c592f71fb1f3e608fd9f6a08bbf89b7a291b53 |
Notes | istex:8146895C2471AC3416D1A718FB6B67080565FF79 ark:/67375/WNG-1F774Q50-1 The City of Hope National Medical Center ArticleID:SIM1273 NIH - No. CA-63265; No. CA-33572 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 12375304 |
PQID | 72166432 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_72166432 pubmed_primary_12375304 pascalfrancis_primary_13986809 crossref_citationtrail_10_1002_sim_1273 crossref_primary_10_1002_sim_1273 wiley_primary_10_1002_sim_1273_SIM1273 istex_primary_ark_67375_WNG_1F774Q50_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 November 2002 |
PublicationDateYYYYMMDD | 2002-11-15 |
PublicationDate_xml | – month: 11 year: 2002 text: 15 November 2002 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Elmont, NY – name: Chichester – name: England |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2002 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Farewell VT. A model for a binary variable with time-censored observations. Biometrika 1977; 64:43-46. Gamel JW, Vogel RL. Comparison of parametric and non-parametric survival methods using simulated clinical data. Statistics in Medicine 1997; 16:1629-1643. Pepe MS, Fleming TR. Weighted Kaplan-Meier statistics: a class of distance tests for censored survival data. Biometrics 1989; 45:497-507. Moyé LA. Alpha calculus in clinical trials: considerations and commentary for the new millennium. Statistics in Medicine 2000; 19:767-779. Harrington DP, Fleming TR. A class of rank test procedures for censored survival data. Biometrika 1982; 693:553-566. Gamel JW, Meyer JS, Province MA. Proliferative rate by S-phase measurement may affect cure of breast carcinoma. Cancer 1995; 76(6):1010-1018. Edwards MJ, Gamel JW, Feuer EJ. Improvement in the prognosis of Breast cancer from 1965 to 1984. Journal of Clinical Oncology 1998; 16(3):1030-1035. Sposto R. Cure model analysis in cancer: an application to data from the Children's Cancer Group. Statistics in Medicine 2002; 21:293-312. Berg JW. The distribution of cancer deaths in time. A survey test of the lognormal model. British Journal of Cancer 1965; 19:695-711. Gill R, Schuacher M. A simple test of the proportional hazards assumption. Biometrika 1987; 74:289-300. Reid N. A conversation with Sir David Cox. Statistical Science 1994; 9(3):439-455. Gamel JW, Vogel RL, Valagussa P, Bonadonna G. Parametric survival analysis of adjuvant therapy for stage II breast cancer. Cancer 1994; 74:2483-2490. Gamel JW, Vogel RL, McLean IW. Assessing the impact of adjuvant therapy on cure rate for stage 2 breast carcinoma. British Journal of Cancer 1993; 68:115-118. Feuer EJ, Kessler LG, Baker SG, Triolo HE, Green DT. The impact of breakthrough clinical trials on survival in population based tumor registries. Journal of Clinical Epidemiology 1991; 44:141-153. Gamel JW, McLean IW. A stable, multivariate extension of the log-normal survival model. Computers and Biomedical Research 1994; 27:148-155. Cantor A. Extending SAS Survival Analysis: Techniques for Medical Research. SAS Institute: Cary, N.C., 1997. Boag JW. Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society, Series B 1949; 11:15-50. McCready DR, Chapman JA, Hanna WM, Kahn HJ, Murray D, Fish EB, Trudeau ME, Andrulis IL, Lickley HL. Factors affecting distant disease-free survival for primary invasive breast cancer: use of a log-normal survival model. Annals of Surgical Oncology 2000; 7(6):416-426. Gamel JW, Jones AS. Squamous carcinoma of the head and neck: cured fraction and median survival time as functions of age, sex, histologic type, and node status. British Journal of Cancer 1993; 67:1071-1075. Yamaguchi K. Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of 'permanent employment' in Japan. Journal of the American Statistical Association 1992; 87:284-292. Fleming TR, Harrington DP, O'Sullivan, M. Supremum versions of the log-rank and generalized Wilcoxon statistics. Journal of the American Statistical Association 1987; 82 397:312-320. SAS/STAT User's Guide,Version 8, Volume 3. SAS Institute Inc.: Cary, N.C., 1999; 2576. Gamel JW, McLean IW, McCurdy JB. Biologic distinctions between cure and time to death in 2892 patients with intraocular melanoma. Cancer 1993; 71:22299-22305. Goldman A. Survivorship analysis when cure is a possibility: a Monte Carlo study. Statistics in Medicine 1984; 3:153-163. D'Agostino RB. Editorial: controlling alpha in a clinical trial: the case for secondary endpoints. Statistics in Medicine 2000; 19:763-766. Koch GG. Discussion for 'Alpha calculus in clinical trials: considerations and commentary for the new millennium'. Statistics in Medicine 2000; 19:781-785. Gamel JW, Vogel RL. A model of long-term survival following adjuvant therapy for stage 2 breast cancer. British Journal of Cancer 1993; 68:1167-1170. Sposto R, Sather HN. Determining the duration of comparative clinical trials while allowing for cure. Journal of Chronic Disease 1985; 38(8):683-690. Gamel JW, George SL, Stanley WE, Seigler HF. Skin melanoma: cured fraction and survival time as functions of thickness, site, histologic type, age and sex. Cancer 1993; 72:1219-1223. Edwards MJ, Gamel JW, Vaughan WP, Wrightson WR. Infiltrating ductal carcinoma of the breast: the survival impact of race. Journal of Clinical Oncology 1998; 16(8):2693-2699. Farewell VT. The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 1982; 38:1041-1046. Breslow NE, Edler L, Berger J. A two-sample censored-data rank for acceleration. Biometrics 1984; 40:1049-1062. Sposto R, Sather HN, Baker SA. A comparison of tests of difference in proportion of patients who are cured. Biometrics 1992; 48:87-99. Allison PD. Survival Analysis Using the SAS System: A Practical Guide. SAS Institute: Cary, N.C., 1997. Gaddum JH. Lognormal distributions. Nature 1945; 156:463. Boag JW. The presentation and analysis of the results of radiotherapy. British Journal of Radiology 1948; 21 Pt I: 128, PtII:189. Cantor A, Shuster JJ. Parametric versus non-parametric methods for estimating cure rates based on censored survival data. Statistics in Medicine 1992; 11:931-937. Cox DR. Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B 1972; 24:187-200. 1984; 40 1993; 68 1993; 67 1982; 38 1949; 11 1989; 45 1987; 74 1995; 76 2000; 7 1997 1977; 64 1994; 27 1994 1999; 3 1972; 24 1992; 11 1945; 156 1965; 19 1999 1998; 16 1994; 9 2000; 19 1990 1987; 82 1993; 72 1984; 3 1993; 71 1991; 44 2002; 21 1997; 16 1982; 693 1992; 48 1948; 21 1992; 87 1994; 74 1985; 38 Fleming TR (e_1_2_1_40_2) 1987; 82 (e_1_2_1_33_2) 1999 Gamel JW (e_1_2_1_14_2) 1995; 76 Cox DR (e_1_2_1_2_2) 1972; 24 Cantor A (e_1_2_1_32_2) 1997 e_1_2_1_41_2 Boag JW (e_1_2_1_5_2) 1949; 11 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_43_2 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_28_2 e_1_2_1_29_2 Allison PD (e_1_2_1_31_2) 1997 Boag JW (e_1_2_1_4_2) 1948; 21 Edwards MJ (e_1_2_1_15_2) 1998; 16 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_10_2 e_1_2_1_38_2 Edwards MJ (e_1_2_1_16_2) 1998; 16 e_1_2_1_37_2 e_1_2_1_13_2 e_1_2_1_36_2 Cox DR (e_1_2_1_30_2) 1994 e_1_2_1_35_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 e_1_2_1_39_2 |
References_xml | – reference: Gamel JW, George SL, Stanley WE, Seigler HF. Skin melanoma: cured fraction and survival time as functions of thickness, site, histologic type, age and sex. Cancer 1993; 72:1219-1223. – reference: Fleming TR, Harrington DP, O'Sullivan, M. Supremum versions of the log-rank and generalized Wilcoxon statistics. Journal of the American Statistical Association 1987; 82 397:312-320. – reference: Cantor A. Extending SAS Survival Analysis: Techniques for Medical Research. SAS Institute: Cary, N.C., 1997. – reference: Yamaguchi K. Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of 'permanent employment' in Japan. Journal of the American Statistical Association 1992; 87:284-292. – reference: Koch GG. Discussion for 'Alpha calculus in clinical trials: considerations and commentary for the new millennium'. Statistics in Medicine 2000; 19:781-785. – reference: Boag JW. The presentation and analysis of the results of radiotherapy. British Journal of Radiology 1948; 21 Pt I: 128, PtII:189. – reference: Cox DR. Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B 1972; 24:187-200. – reference: Gamel JW, Meyer JS, Province MA. Proliferative rate by S-phase measurement may affect cure of breast carcinoma. Cancer 1995; 76(6):1010-1018. – reference: Gamel JW, Vogel RL, McLean IW. Assessing the impact of adjuvant therapy on cure rate for stage 2 breast carcinoma. British Journal of Cancer 1993; 68:115-118. – reference: Breslow NE, Edler L, Berger J. A two-sample censored-data rank for acceleration. Biometrics 1984; 40:1049-1062. – reference: Gill R, Schuacher M. A simple test of the proportional hazards assumption. Biometrika 1987; 74:289-300. – reference: Edwards MJ, Gamel JW, Vaughan WP, Wrightson WR. Infiltrating ductal carcinoma of the breast: the survival impact of race. Journal of Clinical Oncology 1998; 16(8):2693-2699. – reference: Gamel JW, Vogel RL. Comparison of parametric and non-parametric survival methods using simulated clinical data. Statistics in Medicine 1997; 16:1629-1643. – reference: Gamel JW, McLean IW. A stable, multivariate extension of the log-normal survival model. Computers and Biomedical Research 1994; 27:148-155. – reference: McCready DR, Chapman JA, Hanna WM, Kahn HJ, Murray D, Fish EB, Trudeau ME, Andrulis IL, Lickley HL. Factors affecting distant disease-free survival for primary invasive breast cancer: use of a log-normal survival model. Annals of Surgical Oncology 2000; 7(6):416-426. – reference: Harrington DP, Fleming TR. A class of rank test procedures for censored survival data. Biometrika 1982; 693:553-566. – reference: Farewell VT. The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 1982; 38:1041-1046. – reference: Gamel JW, Vogel RL, Valagussa P, Bonadonna G. Parametric survival analysis of adjuvant therapy for stage II breast cancer. Cancer 1994; 74:2483-2490. – reference: D'Agostino RB. Editorial: controlling alpha in a clinical trial: the case for secondary endpoints. Statistics in Medicine 2000; 19:763-766. – reference: Gaddum JH. Lognormal distributions. Nature 1945; 156:463. – reference: Moyé LA. Alpha calculus in clinical trials: considerations and commentary for the new millennium. Statistics in Medicine 2000; 19:767-779. – reference: Pepe MS, Fleming TR. Weighted Kaplan-Meier statistics: a class of distance tests for censored survival data. Biometrics 1989; 45:497-507. – reference: Gamel JW, Vogel RL. A model of long-term survival following adjuvant therapy for stage 2 breast cancer. British Journal of Cancer 1993; 68:1167-1170. – reference: SAS/STAT User's Guide,Version 8, Volume 3. SAS Institute Inc.: Cary, N.C., 1999; 2576. – reference: Feuer EJ, Kessler LG, Baker SG, Triolo HE, Green DT. The impact of breakthrough clinical trials on survival in population based tumor registries. Journal of Clinical Epidemiology 1991; 44:141-153. – reference: Gamel JW, McLean IW, McCurdy JB. Biologic distinctions between cure and time to death in 2892 patients with intraocular melanoma. Cancer 1993; 71:22299-22305. – reference: Sposto R, Sather HN. Determining the duration of comparative clinical trials while allowing for cure. Journal of Chronic Disease 1985; 38(8):683-690. – reference: Allison PD. Survival Analysis Using the SAS System: A Practical Guide. SAS Institute: Cary, N.C., 1997. – reference: Edwards MJ, Gamel JW, Feuer EJ. Improvement in the prognosis of Breast cancer from 1965 to 1984. Journal of Clinical Oncology 1998; 16(3):1030-1035. – reference: Farewell VT. A model for a binary variable with time-censored observations. Biometrika 1977; 64:43-46. – reference: Gamel JW, Jones AS. Squamous carcinoma of the head and neck: cured fraction and median survival time as functions of age, sex, histologic type, and node status. British Journal of Cancer 1993; 67:1071-1075. – reference: Goldman A. Survivorship analysis when cure is a possibility: a Monte Carlo study. Statistics in Medicine 1984; 3:153-163. – reference: Reid N. A conversation with Sir David Cox. Statistical Science 1994; 9(3):439-455. – reference: Berg JW. The distribution of cancer deaths in time. A survey test of the lognormal model. British Journal of Cancer 1965; 19:695-711. – reference: Sposto R, Sather HN, Baker SA. A comparison of tests of difference in proportion of patients who are cured. Biometrics 1992; 48:87-99. – reference: Sposto R. Cure model analysis in cancer: an application to data from the Children's Cancer Group. Statistics in Medicine 2002; 21:293-312. – reference: Cantor A, Shuster JJ. Parametric versus non-parametric methods for estimating cure rates based on censored survival data. Statistics in Medicine 1992; 11:931-937. – reference: Boag JW. Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society, Series B 1949; 11:15-50. – volume: 72 start-page: 1219 year: 1993 end-page: 1223 article-title: Skin melanoma: cured fraction and survival time as functions of thickness, site, histologic type, age and sex publication-title: Cancer – volume: 44 start-page: 141 year: 1991 end-page: 153 article-title: The impact of breakthrough clinical trials on survival in population based tumor registries publication-title: Journal of Clinical Epidemiology – volume: 19 start-page: 763 year: 2000 end-page: 766 article-title: Editorial: controlling alpha in a clinical trial: the case for secondary endpoints publication-title: Statistics in Medicine – volume: 24 start-page: 187 year: 1972 end-page: 200 article-title: Regression models and life tables (with discussion) publication-title: Journal of the Royal Statistical Society, Series B – volume: 21 start-page: 293 year: 2002 end-page: 312 article-title: Cure model analysis in cancer: an application to data from the Children's Cancer Group publication-title: Statistics in Medicine – volume: 19 start-page: 781 year: 2000 end-page: 785 article-title: Discussion for ‘Alpha calculus in clinical trials: considerations and commentary for the new millennium’ publication-title: Statistics in Medicine – volume: 16 start-page: 1629 year: 1997 end-page: 1643 article-title: Comparison of parametric and non‐parametric survival methods using simulated clinical data publication-title: Statistics in Medicine – volume: 48 start-page: 87 year: 1992 end-page: 99 article-title: A comparison of tests of difference in proportion of patients who are cured publication-title: Biometrics – volume: 11 start-page: 931 year: 1992 end-page: 937 article-title: Parametric versus non‐parametric methods for estimating cure rates based on censored survival data publication-title: Statistics in Medicine – volume: 64 start-page: 43 year: 1977 end-page: 46 article-title: A model for a binary variable with time‐censored observations publication-title: Biometrika – volume: 156 start-page: 463 year: 1945 article-title: Lognormal distributions publication-title: Nature – volume: 67 start-page: 1071 year: 1993 end-page: 1075 article-title: Squamous carcinoma of the head and neck: cured fraction and median survival time as functions of age, sex, histologic type, and node status publication-title: British Journal of Cancer – volume: 71 start-page: 22299 year: 1993 end-page: 22305 article-title: Biologic distinctions between cure and time to death in 2892 patients with intraocular melanoma publication-title: Cancer – volume: 68 start-page: 115 year: 1993 end-page: 118 article-title: Assessing the impact of adjuvant therapy on cure rate for stage 2 breast carcinoma publication-title: British Journal of Cancer – volume: 16 start-page: 2693 issue: 8 year: 1998 end-page: 2699 article-title: Infiltrating ductal carcinoma of the breast: the survival impact of race publication-title: Journal of Clinical Oncology – year: 1990 – volume: 19 start-page: 767 year: 2000 end-page: 779 article-title: Alpha calculus in clinical trials: considerations and commentary for the new millennium publication-title: Statistics in Medicine – volume: 38 start-page: 1041 year: 1982 end-page: 1046 article-title: The use of mixture models for the analysis of survival data with long‐term survivors publication-title: Biometrics – volume: 3 start-page: 2576 year: 1999 – volume: 21 year: 1948 article-title: The presentation and analysis of the results of radiotherapy publication-title: British Journal of Radiology – volume: 19 start-page: 695 year: 1965 end-page: 711 article-title: The distribution of cancer deaths in time. A survey test of the lognormal model publication-title: British Journal of Cancer – volume: 74 start-page: 289 year: 1987 end-page: 300 article-title: A simple test of the proportional hazards assumption publication-title: Biometrika – volume: 693 start-page: 553 year: 1982 end-page: 566 article-title: A class of rank test procedures for censored survival data publication-title: Biometrika – volume: 3 start-page: 153 year: 1984 end-page: 163 article-title: Survivorship analysis when cure is a possibility: a Monte Carlo study publication-title: Statistics in Medicine – volume: 27 start-page: 148 year: 1994 end-page: 155 article-title: A stable, multivariate extension of the log‐normal survival model publication-title: Computers and Biomedical Research – volume: 7 start-page: 416 issue: 6 year: 2000 end-page: 426 article-title: Factors affecting distant disease‐free survival for primary invasive breast cancer: use of a log‐normal survival model publication-title: Annals of Surgical Oncology – start-page: 21 year: 1994 – volume: 40 start-page: 1049 year: 1984 end-page: 1062 article-title: A two‐sample censored‐data rank for acceleration publication-title: Biometrics – year: 1997 – volume: 9 start-page: 439 issue: 3 year: 1994 end-page: 455 article-title: A conversation with Sir David Cox publication-title: Statistical Science – volume: 38 start-page: 683 issue: 8 year: 1985 end-page: 690 article-title: Determining the duration of comparative clinical trials while allowing for cure publication-title: Journal of Chronic Disease – volume: 76 start-page: 1010 issue: 6 year: 1995 end-page: 1018 article-title: Proliferative rate by S‐phase measurement may affect cure of breast carcinoma publication-title: Cancer – volume: 87 start-page: 284 year: 1992 end-page: 292 article-title: Accelerated failure‐time regression models with a regression model of surviving fraction: an application to the analysis of ‘permanent employment’ in Japan publication-title: Journal of the American Statistical Association – volume: 74 start-page: 2483 year: 1994 end-page: 2490 article-title: Parametric survival analysis of adjuvant therapy for stage II breast cancer publication-title: Cancer – volume: 16 start-page: 1030 issue: 3 year: 1998 end-page: 1035 article-title: Improvement in the prognosis of Breast cancer from 1965 to 1984 publication-title: Journal of Clinical Oncology – volume: 45 start-page: 497 year: 1989 end-page: 507 article-title: Weighted Kaplan‐Meier statistics: a class of distance tests for censored survival data publication-title: Biometrics – volume: 11 start-page: 15 year: 1949 end-page: 50 article-title: Maximum likelihood estimates of the proportion of patients cured by cancer therapy publication-title: Journal of the Royal Statistical Society, Series B – volume: 68 start-page: 1167 year: 1993 end-page: 1170 article-title: A model of long‐term survival following adjuvant therapy for stage 2 breast cancer publication-title: British Journal of Cancer – year: 1999 – volume: 82 start-page: 312 issue: 397 year: 1987 end-page: 320 article-title: Supremum versions of the log‐rank and generalized Wilcoxon statistics publication-title: Journal of the American Statistical Association – volume: 82 start-page: 312 issue: 397 year: 1987 ident: e_1_2_1_40_2 article-title: Supremum versions of the log‐rank and generalized Wilcoxon statistics publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1987.10478435 – ident: e_1_2_1_36_2 doi: 10.1002/(SICI)1097-0258(20000330)19:6<763::AID-SIM517>3.0.CO;2-8 – ident: e_1_2_1_22_2 doi: 10.1093/biomet/64.1.43 – ident: e_1_2_1_11_2 doi: 10.1002/1097-0142(19930815)72:4<1219::AID-CNCR2820720414>3.0.CO;2-0 – ident: e_1_2_1_12_2 doi: 10.1038/bjc.1993.498 – volume-title: Extending SAS Survival Analysis: Techniques for Medical Research year: 1997 ident: e_1_2_1_32_2 – volume: 76 start-page: 1010 issue: 6 year: 1995 ident: e_1_2_1_14_2 article-title: Proliferative rate by S‐phase measurement may affect cure of breast carcinoma publication-title: Cancer – ident: e_1_2_1_28_2 doi: 10.1016/0895-4356(91)90262-8 – ident: e_1_2_1_23_2 doi: 10.2307/2290258 – ident: e_1_2_1_41_2 doi: 10.1093/biomet/69.3.553 – ident: e_1_2_1_3_2 – ident: e_1_2_1_26_2 doi: 10.1038/bjc.1965.83 – ident: e_1_2_1_35_2 doi: 10.1038/bjc.1993.196 – start-page: 21 volume-title: Monographs on Statistics and Applied Probability year: 1994 ident: e_1_2_1_30_2 – ident: e_1_2_1_42_2 doi: 10.2307/2531155 – ident: e_1_2_1_8_2 doi: 10.1002/sim.987 – ident: e_1_2_1_13_2 doi: 10.1038/bjc.1993.296 – ident: e_1_2_1_37_2 doi: 10.1002/(SICI)1097-0258(20000330)19:6<767::AID-SIM518>3.0.CO;2-U – start-page: 2576 volume-title: SAS/STAT User's Guide,Version 8 year: 1999 ident: e_1_2_1_33_2 – ident: e_1_2_1_9_2 doi: 10.1002/1097-0142(19930401)71:7<2299::AID-CNCR2820710721>3.0.CO;2-G – volume: 16 start-page: 1030 issue: 3 year: 1998 ident: e_1_2_1_15_2 article-title: Improvement in the prognosis of Breast cancer from 1965 to 1984 publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.1998.16.3.1030 – ident: e_1_2_1_17_2 doi: 10.1002/sim.4780110710 – volume: 24 start-page: 187 year: 1972 ident: e_1_2_1_2_2 article-title: Regression models and life tables (with discussion) publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: e_1_2_1_29_2 doi: 10.1002/(SICI)1097-0258(19970730)16:14<1629::AID-SIM594>3.0.CO;2-C – ident: e_1_2_1_7_2 doi: 10.1006/cbmr.1994.1014 – ident: e_1_2_1_19_2 doi: 10.2307/2532741 – volume-title: Survival Analysis Using the SAS System: A Practical Guide year: 1997 ident: e_1_2_1_31_2 – ident: e_1_2_1_25_2 doi: 10.1007/s10434-000-0416-z – ident: e_1_2_1_34_2 doi: 10.1093/biomet/74.2.289 – ident: e_1_2_1_10_2 doi: 10.1038/bjc.1993.196 – ident: e_1_2_1_24_2 doi: 10.1038/156463a0 – ident: e_1_2_1_43_2 doi: 10.1214/ss/1177010394 – volume: 11 start-page: 15 year: 1949 ident: e_1_2_1_5_2 article-title: Maximum likelihood estimates of the proportion of patients cured by cancer therapy publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1949.tb00020.x – ident: e_1_2_1_6_2 doi: 10.1002/1097-0142(19941101)74:9<2483::AID-CNCR2820740915>3.0.CO;2-3 – ident: e_1_2_1_39_2 doi: 10.2307/2531492 – ident: e_1_2_1_20_2 doi: 10.1002/sim.4780030208 – volume: 16 start-page: 2693 issue: 8 year: 1998 ident: e_1_2_1_16_2 article-title: Infiltrating ductal carcinoma of the breast: the survival impact of race publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.1998.16.8.2693 – ident: e_1_2_1_18_2 doi: 10.1016/0021-9681(85)90022-0 – volume: 21 year: 1948 ident: e_1_2_1_4_2 article-title: The presentation and analysis of the results of radiotherapy publication-title: British Journal of Radiology – ident: e_1_2_1_21_2 doi: 10.2307/2529885 – ident: e_1_2_1_38_2 doi: 10.1002/(SICI)1097-0258(20000330)19:6<781::AID-SIM519>3.0.CO;2-6 – ident: e_1_2_1_27_2 doi: 10.1007/978-1-4899-2819-1 |
SSID | ssj0011527 |
Score | 1.7483813 |
Snippet | The Cox proportional hazards model (CPH) is routinely used in clinical trials, but it may encounter serious difficulties with departures from the proportional... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3279 |
SubjectTerms | accelerated failure Algorithms Biological and medical sciences Bone Marrow Transplantation cure model Humans Leukemia, Myeloid, Acute - therapy log-normal Medical sciences proportional hazards Proportional Hazards Models Survival Analysis |
Title | Parametric models for accelerated and long-term survival: a comment on proportional hazards |
URI | https://api.istex.fr/ark:/67375/WNG-1F774Q50-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.1273 https://www.ncbi.nlm.nih.gov/pubmed/12375304 https://www.proquest.com/docview/72166432 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkVAlxGN5pYViJASnbOM4dmJuCFgK0la8KiqhKrIdm1Zts9VmV6p64ifwG_klzMTJrhYVCXFJLnbiTObl8cw3hDxNjAarDttUrioZZyJxMVg5H3spleBGGyWwdni8K3f2svf7Yr_LqsRamIAPsQi4oWS0-hoFXJtmewka2hydDhkYX1C_jEuEzX_9aYEcxfpurXhCKXMmetzZJN3uJ65YoqtI1HPMjNQNEMeHrhaXuZ2rXmxrhkY3ybf-A0L2yfFwPjNDe_EHtuP_feEtcqPzTunLwE63yRVXD8i1cXf-PiDXQ5SPhuKlAVlHXzVAPd8hBx80Znoh5D9tG-w0FDxiqq0F04aIFBXVdUVPJvX3Xz9-okmgzRw0FfD6C6oprA4jlXRS0zNs3TANUUp6qC-wMOwu2Ru9-fJqJ-66N8Q2E4zHzlgrCgf2XyJiEFy1raziieVWqNTnzBvmuZNJ4SvlpU4KY3yhTK5TxYzg98haPandA0IL5VjKXMJBPWXcphr2Xc7L1GQ517nVEXne_8nSdtDm2GHjpAygzGkJpCyRlBF5shh5FuA8LhnzrGWGxQA9Pcb0t1yUX3fflmwEHvNHAZMisrXCLcsnclXIIlERedyzTwlSi0cxunaTeVMiZBL4gmlE7geuWs5N4UU8yWAVLW_8dZnl53djvG_868BNsh5a2bCYiYdkbTadu0fgUc3MVis7vwFxJhyy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVoJKiMfyWh6tkRCcso3jOInhhIBlC90Vj1b0AIpsxwHUkq02uxLqiZ_Ab-SXMBNvdrWoSIhLcrETx5nxfB7PfAPwIDQarTpuU4UqkiCWoQvQypVBmSRKCqONkpQ7PBwlg4P41aE8XIMnbS6M54dYONxIM5r1mhScHNI7S9bQ-uu3Hkfrew42YsQZtPN6_m7BHcXbeq10RpmkXLbMs2G00_ZcsUUbNK3fKTZS1zg9pa9rcRbwXMWxjSHqX4aP7Sf4-JOj3mxqevb0D3bH__zGK3BpDlDZUy9RV2HNVR04P5wfwXfgonf0MZ-_1IFNgque7fkafHqjKdiLWP9ZU2OnZgiKmbYWrRuRUhRMVwU7Hleff_34SVaB1TNcrFDcHzPNcHjkrGTjip1Q9YaJd1SyL_qUcsOuw0H_xf6zQTAv4BDYWHIROGOtzBxCgIRIg_CqbWGVCK2wUkVlykvDS-GSMCsLVSY6zIwpM2VSHSlupLgB69W4creAZcrxiLtQ4AoVCxtp3Hq5MolMnAqdWt2FR-2vzO2c3ZyKbBznnpc5ynEqc5rKLtxftDzxjB5ntHnYSMOigZ4cUQRcKvMPo5c57yNofiuxUxe2VsRl-UShsiQLVRe2W_nJUXHpNEZXbjyrc2JNQjgYdeGmF6tl3whfJMIYR9EIx1-Hmb_fHdL99r823IYLg_3hXr63O3p9BzZ9ZRsecHkX1qeTmbuHAGtqthpF-g0rsCDR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BK1WVEMdyLUdrJARP2cZxnMS8IWBpga3KUbUSQpHt2IBasqs9JNQnfgK_kV_CTLzZ1aIiIV6SFzvxMeP5bM98A_AwNhqtOm5ThaqyKJWxi9DK-chnmZLCaKMkxQ4P9rPdw_TVsTyee1VSLEzgh1gcuJFmNOs1Kfio8jtL0tDJ1289jsb3IqynGQIJAkTvFtRRvE3XSleUWc5lSzwbJzttzRVTtE6j-p1cI_UER8eHtBbn4c5VGNvYof4V-Nj2ILifnPRmU9OzZ3-QO_5fF6_C5Tk8ZU-DPF2DC67uwMZgfgHfgUvhmI-F6KUObBJYDVzP1-HTgSZXL-L8Z02GnQlDSMy0tWjbiJKiYrqu2Omw_vzrx0-yCWwyw6UKhf0J0wxbR0eVbFizEeVuGIdjSvZFn1Fk2A047L_48Gw3mqdviGwquYicsVYWDgFARpRB-NS2skrEVlipEp9zb7gXDifPV8pnOi6M8YUyuU4UN1LchLV6WLvbwArleMJdLHB9SoVNNG68nM8Sk-ZC51Z34XE7k6Wdc5tTio3TMrAyJyUOZUlD2YUHi5KjwOdxTplHjTAsCujxCfm_5bI82n9Z8j5C5rcSK3Vha0Vall8UqsiKWHVhuxWfEtWW7mJ07YazSUmcSQgGky7cClK1rJvgj0ScYisa2fhrM8v3ewN63_nXgtuwcfC8X77Z2399FzZDWhsecXkP1qbjmbuP6Gpqtho1-g233x-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+models+for+accelerated+and+long-term+survival%3A+a+comment+on+proportional+hazards&rft.jtitle=Statistics+in+medicine&rft.au=FRANKEL%2C+Paul&rft.au=LONGMATE%2C+Jeffrey&rft.date=2002-11-15&rft.pub=Wiley&rft.issn=0277-6715&rft.volume=21&rft.issue=21&rft.spage=3279&rft.epage=3289&rft_id=info:doi/10.1002%2Fsim.1273&rft.externalDBID=n%2Fa&rft.externalDocID=13986809 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |