Adsorption of cationic polyelectrolyte at the solid/liquid interface and dispersion of nanosized silica in water

Adsorption of cationic polyelectrolyte, a homopolymer of maleimide propyl trimethylammonium chloride (MPTMAC), on silica nanoparticles from aqueous solution was studied. The adsorbed amount of MPTMAC and the adsorption layer thickness from solutions of different pH, polyelectrolyte concentration, sa...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 285; no. 1; pp. 33 - 40
Main Authors Liufu, Sheng-Cong, Xiao, Han-Ning, Li, Yu-Ping
Format Journal Article
LanguageEnglish
Published San Diego, CA Elsevier Inc 01.05.2005
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Adsorption of cationic polyelectrolyte, a homopolymer of maleimide propyl trimethylammonium chloride (MPTMAC), on silica nanoparticles from aqueous solution was studied. The adsorbed amount of MPTMAC and the adsorption layer thickness from solutions of different pH, polyelectrolyte concentration, salt type, and salt concentration were measured. The adsorbed amount exhibited a maximum as a function of the electrolyte concentration. The onset of the decline in the adsorbed amount depended on the type of counterions. The thickness of the adsorption layer increased gradually with increased of electrolyte concentration and leveled off at high electrolyte concentration. The enhanced adsorption in the presence of Na 2SO 4 can be explained by the bivalent SO 2− 4 causing a better shielding effect. With increasing pH the adsorbed amount of MPTMAC increased, whereas the thickness of an adsorbed layer of MPTMAC decreased. At low polyelectrolyte concentrations unstable silica suspensions were observed from a stability test. At high polyelectrolyte concentrations the higher particle coverage caused electrosteric stabilization of the dispersion. However, further increase in MPTMAC concentration after saturated adsorption would flocculate the dispersed system. At low pH, MPTMAC tending to create a loops or tails conformation stabilized the suspension.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2004.11.012