Stellar intensity interferometry: Prospects for sub-milliarcsecond optical imaging
Using kilometric arrays of air Cherenkov telescopes at short wavelengths, intensity interferometry may increase the spatial resolution achieved in optical astronomy by an order of magnitude, enabling images of rapidly rotating hot stars with structures in their circumstellar disks and winds, or mapp...
Saved in:
Published in | New astronomy reviews Vol. 56; no. 5; pp. 143 - 167 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Using kilometric arrays of air Cherenkov telescopes at short wavelengths, intensity interferometry may increase the spatial resolution achieved in optical astronomy by an order of magnitude, enabling images of rapidly rotating hot stars with structures in their circumstellar disks and winds, or mapping out patterns of nonradial pulsations across stellar surfaces. Intensity interferometry (once pioneered by Hanbury Brown and Twiss) connects telescopes only electronically, and is practically insensitive to atmospheric turbulence and optical imperfections, permitting observations over long baselines and through large airmasses, also at short optical wavelengths. The required large telescopes (∼10m) with very fast detectors (∼ns) are becoming available as the arrays primarily erected to measure Cherenkov light emitted in air by particle cascades initiated by energetic gamma rays. Planned facilities (e.g., CTA, Cherenkov Telescope Array) envision many tens of telescopes distributed over a few square km. Digital signal handling enables very many baselines (from tens of meters to over a kilometer) to be simultaneously synthesized between many pairs of telescopes, while stars may be tracked across the sky with electronic time delays, in effect synthesizing an optical interferometer in software. Simulated observations indicate limiting magnitudes around mV=8, reaching angular resolutions ∼30μarcsec in the violet. The signal-to-noise ratio favors high-temperature sources and emission-line structures, and is independent of the optical passband, be it a single spectral line or the broad spectral continuum. Intensity interferometry directly provides the modulus (but not phase) of any spatial frequency component of the source image; for this reason a full image reconstruction requires phase retrieval techniques. This is feasible if sufficient coverage of the interferometric (u,v)-plane is available, as was verified through numerical simulations. Laboratory and field experiments are in progress; test telescopes have been erected, intensity interferometry has been achieved in the laboratory, and first full-scale tests of connecting large Cherenkov telescopes have been carried out. This paper reviews this interferometric method in view of the new possibilities offered by arrays of air Cherenkov telescopes, and outlines observational programs that should become realistic already in the rather near future. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1387-6473 1872-9630 1872-9630 |
DOI: | 10.1016/j.newar.2012.06.001 |