Synthesis and evaluation of the anti-inflammatory properties of selenium-derivatives of celecoxib

Celecoxib is a selective cyclooxygenase (COX)-2 inhibitor used to treat inflammation, while selenium is known to down-regulate the transcription of COX-2 and other pro-inflammatory genes. To expand the anti-inflammatory property, wherein celecoxib could inhibit pro-inflammatory gene expression at ex...

Full description

Saved in:
Bibliographic Details
Published inChemico-biological interactions Vol. 188; no. 3; pp. 446 - 456
Main Authors Desai, Dhimant, Kaushal, Naveen, Gandhi, Ujjawal H., Arner, Ryan J., D'Souza, Christopher, Chen, Gang, Vunta, Hema, El-Bayoumy, Karam, Amin, Shantu, Prabhu, K. Sandeep
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 05.12.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Celecoxib is a selective cyclooxygenase (COX)-2 inhibitor used to treat inflammation, while selenium is known to down-regulate the transcription of COX-2 and other pro-inflammatory genes. To expand the anti-inflammatory property, wherein celecoxib could inhibit pro-inflammatory gene expression at extremely low doses, we incorporated selenium (Se) into two Se-derivatives of celecoxib, namely; selenocoxib-2 and selenocoxib-3. In vitro kinetic assays of the inhibition of purified human COX-2 activity by these compounds indicated that celecoxib and selenocoxib-3 had identical K I values of 2.3 and 2.4 μM; while selenocoxib-2 had a lower K I of 0.72 μM. Furthermore, selenocoxib-2 inhibited lipopolysaccharide-induced activation of NF-κB leading to the down-regulation of expression of COX-2, iNOS, and TNFα more effectively than selenocoxib-3 and celecoxib in RAW264.7 macrophages and murine bone marrow-derived macrophages. Studies with rat liver microsomes followed by UPLC–MS–MS analysis indicated the formation of selenenylsulfide conjugates of selenocoxib-2 with N-acetylcysteine. Selenocoxib-2 was found to release minor amounts of Se that was effectively inhibited by the CYP inhibitor, sulphaphenazole. While these studies suggest that selenocoxib-2, but not celecoxib and selenocoxib-3, targets upstream events in the NF-κB signaling axis, the ability to effectively suppress NF-κB activation independent of cellular selenoprotein synthesis opens possibilities for a new generation of COX-2 inhibitors with significant and broader anti-inflammatory potential.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
DD and NK contributed equally to this manuscript.
ISSN:0009-2797
1872-7786
1872-7786
DOI:10.1016/j.cbi.2010.09.021