Improving resolution of second harmonic generation microscopy via scanning structured illumination
Second harmonic generation microscopy (SHGM) is a well-known technique for examining the noncentrosymmetric structures in biomedical research. However, without real-state transitions, fluorescence-based superresolution methods cannot be applied. To improve the resolution, fringe-scanning SHGM (FS-SH...
Saved in:
Published in | Biomedical optics express Vol. 9; no. 12; pp. 6081 - 6090 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Optical Society of America
01.12.2018
|
Online Access | Get full text |
Cover
Loading…
Summary: | Second harmonic generation microscopy (SHGM) is a well-known technique for examining the noncentrosymmetric structures in biomedical research. However, without real-state transitions, fluorescence-based superresolution methods cannot be applied. To improve the resolution, fringe-scanning SHGM (FS-SHGM), which combines SHGM with structured illumination based on point-scanning, is introduced in this paper. The scanning path was modulated to generate illumination patterns. For the coherent parts of SHG signals, a mathematical model of image formation and reconstruction was established. Both simulations and experiments showed a resolution improvement factor of ~1.4 in the lateral and 1.56 in the axial directions for chicken tendons and mouse skin. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2156-7085 2156-7085 |
DOI: | 10.1364/BOE.9.006081 |