Chondrule Formation by the Jovian Sweeping Secular Resonance

Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism f...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 883; no. 2; pp. 164 - 175
Main Authors Gong, Munan, Zheng, Xiaochen, Lin, Douglas N. C., Silsbee, Kedron, Baruteau, Clement, Mao, Shude
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.10.2019
IOP Publishing
American Astronomical Society
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ab3e70

Cover

Loading…
Abstract Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal's size, as well as the physical environment and the probability for chondrule formation. We find that 50-2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%-9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τdep 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions.
AbstractList Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal’s size, as well as the physical environment and the probability for chondrule formation. We find that 50–2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%–9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τ dep  ≈ 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions.
Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal’s size, as well as the physical environment and the probability for chondrule formation. We find that 50–2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%–9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τ dep ≈ 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions.
Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system.However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present anew scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Joviansweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbitalevolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate thedependence of eccentricity excitation on the planetesimal’s size, as well as the physical environment and theprobability for chondrule formation. We find that 50–2000 km planetesimals can obtain eccentricities larger than0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, andin the inner disk. The fraction of chondrule precursors that become chondrules is about 4%–9% between 1.5 and3 au. Our model implies that the disk depletion timescale is τdep ≈ 1 Myr, comparable to the age spread ofchondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calciumaluminum inclusions
Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal's size, as well as the physical environment and the probability for chondrule formation. We find that 50-2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%-9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τdep 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions.
Author Lin, Douglas N. C.
Gong, Munan
Zheng, Xiaochen
Silsbee, Kedron
Mao, Shude
Baruteau, Clement
Author_xml – sequence: 1
  givenname: Munan
  orcidid: 0000-0003-1613-6263
  surname: Gong
  fullname: Gong, Munan
  email: munan@mpe.mpg.de
  organization: Max-Planck Institute for Extraterrestrial Physics , Garching by Munich, D-85748, Germany
– sequence: 2
  givenname: Xiaochen
  orcidid: 0000-0002-7814-9185
  surname: Zheng
  fullname: Zheng, Xiaochen
  organization: Tsinghua University Department of Astronomy and Center for Astrophysics, Beijing 10086, People's Republic of China
– sequence: 3
  givenname: Douglas N. C.
  surname: Lin
  fullname: Lin, Douglas N. C.
  organization: University of California Santa Cruz Department of Astronomy and Astrophysics, Santa Cruz, CA 95064, USA
– sequence: 4
  givenname: Kedron
  orcidid: 0000-0003-1572-0505
  surname: Silsbee
  fullname: Silsbee, Kedron
  organization: Max-Planck Institute for Extraterrestrial Physics , Garching by Munich, D-85748, Germany
– sequence: 5
  givenname: Clement
  surname: Baruteau
  fullname: Baruteau, Clement
  organization: Institut de Recherche en Astrophysique et Planétologie (IRAP) , 14 avenue Edouard Belin, F-31400 Toulouse, France
– sequence: 6
  givenname: Shude
  orcidid: 0000-0001-8317-2788
  surname: Mao
  fullname: Mao, Shude
BackLink https://hal.science/hal-02369612$$DView record in HAL
BookMark eNp9kMFLwzAUh4NMcJvePRY8CdYlTZM04GUM55SB4BS8hTRNXUaX1LSd7L-3tTJB0MsL7_H9Xh7fCAyssxqAcwSvcRKzCSI4CWNM2ESmWDN4BIaH0QAMIYRxSDF7PQGjqtp0bcT5ENzM1s5mvil0MHd-K2vjbJDug3qtgwe3M9IGqw-tS2PfgpVWTSF98KQrZ6VV-hQc57Ko9Nn3OwYv89vn2SJcPt7dz6bLUMUE1m2liMokxhSS9lOkUpIoTjjETKYpiVJOKY0YV1zmUZohmcWME0Ih1pmSOcVjcNnvXctClN5spd8LJ41YTJeim8EIU05RtEMte9GzpXfvja5qsXGNt-15ooUIYxTGcUvBnlLeVZXX-WEtgqLzKTp5opMnep9thP6KKFN_-aq9NMV_was-aFz5c8yf-CcMKYeC
CitedBy_id crossref_primary_10_3847_1538_4357_ad0965
crossref_primary_10_3847_1538_4357_abaef2
crossref_primary_10_3847_1538_4357_ac9bf6
crossref_primary_10_1016_j_gca_2021_12_027
Cites_doi 10.1093/mnras/stt1867
10.1126/science.279.5351.681
10.1086/305589
10.1046/j.1365-8711.2003.06604.x
10.1006/icar.2002.6895
10.1143/PTPS.70.35
10.1126/science.1251766
10.1086/155591
10.1086/497386
10.1086/320685
10.1103/PhysRev.23.710
10.1086/319018
10.1051/0004-6361/201424837
10.1088/0004-637X/752/1/27
10.3847/1538-4357/836/2/207
10.1086/526408
10.1111/j.1365-2966.2010.17442.x
10.1086/520043
10.1086/367884
10.1006/icar.2001.6811
10.1017/CBO9780511535246
10.1016/0016-7037(53)90064-7
10.1086/173470
10.1051/0004-6361/201424846
10.3847/1538-4357/aa8620
10.1046/j.1365-8711.2000.03466.x
10.1088/0004-637X/737/1/37
10.1086/306917
10.3847/0004-637X/818/2/103
10.1016/0019-1035(88)90103-0
10.1086/512537
10.1016/0019-1035(76)90117-2
10.1073/pnas.1704461114
10.1093/mnras/sty949
10.1111/j.1945-5100.1999.tb01728.x
10.1146/annurev.earth.35.031306.140100
10.1111/j.1945-5100.2012.01357.x
10.1038/373494a0
10.1088/2041-8205/794/1/L7
10.1016/j.icarus.2019.03.031
10.1088/0004-637X/794/1/91
10.1143/PTP.56.1756
10.1006/icar.2001.6682
10.1016/0019-1035(81)90169-X
ContentType Journal Article
Copyright 2019. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Oct 01, 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Oct 01, 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
1XC
VOOES
DOI 10.3847/1538-4357/ab3e70
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database


DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Chondrule Formation by the Jovian Sweeping Secular Resonance
EISSN 1538-4357
ExternalDocumentID oai_HAL_hal_02369612v1
10_3847_1538_4357_ab3e70
apjab3e70
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
1XC
VOOES
ID FETCH-LOGICAL-c450t-c4616a8436052991cb58c959037abb52b9666279c9af2bd1ad47955603edcaf63
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Sat Jun 21 06:31:33 EDT 2025
Wed Aug 13 09:18:02 EDT 2025
Thu Apr 24 23:07:22 EDT 2025
Tue Jul 01 03:24:10 EDT 2025
Wed Aug 21 03:33:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-c4616a8436052991cb58c959037abb52b9666279c9af2bd1ad47955603edcaf63
Notes AAS14141
The Solar System, Exoplanets, and Astrobiology
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1613-6263
0000-0003-1572-0505
0000-0002-7814-9185
0000-0001-8317-2788
0000-0002-2672-3456
OpenAccessLink https://hal.science/hal-02369612
PQID 2365776044
PQPubID 4562441
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_02369612v1
proquest_journals_2365776044
crossref_citationtrail_10_3847_1538_4357_ab3e70
crossref_primary_10_3847_1538_4357_ab3e70
iop_journals_10_3847_1538_4357_ab3e70
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2019
Publisher The American Astronomical Society
IOP Publishing
American Astronomical Society
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
– name: American Astronomical Society
References Dullemond (apjab3e70bib12) 2014; 794
Kruijer (apjab3e70bib21) 2014; 344
Whipple (apjab3e70bib47) 1972
Bryden (apjab3e70bib6) 1999; 514
Meibom (apjab3e70bib24) 1999; 34
Hayashi (apjab3e70bib17) 1981; 70
Epstein (apjab3e70bib14) 1924; 23
Ward (apjab3e70bib44) 1988; 73
Zhou (apjab3e70bib51) 2007; 666
Papaloizou (apjab3e70bib32) 2000; 315
Baruteau (apjab3e70bib5) 2014
Urey (apjab3e70bib41) 1953; 4
Sears (apjab3e70bib37) 1988
Desch (apjab3e70bib10) 2012; 47
Murray (apjab3e70bib26) 1999
Richert (apjab3e70bib34) 2018; 477
Shu (apjab3e70bib39) 2001; 548
Scott (apjab3e70bib35) 2007; 35
Iida (apjab3e70bib18) 2001; 153
Adachi (apjab3e70bib2) 1976; 56
Nagasawa (apjab3e70bib29) 2005; 635
Kruijer (apjab3e70bib20) 2017; 114
Paardekooper (apjab3e70bib31) 2011; 410
Dürmann (apjab3e70bib13) 2015; 574
Dobbs-Dixon (apjab3e70bib11) 2007; 660
Mathis (apjab3e70bib23) 1977; 217
Mann (apjab3e70bib22) 2016; 818
Walsh (apjab3e70bib42) 2019; 329
Aarseth (apjab3e70bib1) 2003
Zheng (apjab3e70bib50) 2019
Ciesla (apjab3e70bib7) 2002; 158
Morris (apjab3e70bib25) 2012; 752
Nagasawa (apjab3e70bib28) 2003; 586
Armitage (apjab3e70bib3) 2003; 342
Ribas (apjab3e70bib33) 2015; 576
Artymowicz (apjab3e70bib4) 1993; 419
Desch (apjab3e70bib9) 2005
Kominami (apjab3e70bib19) 2002; 157
Zuckerman (apjab3e70bib52) 1995; 373
Thommes (apjab3e70bib40) 2008; 676
Xu (apjab3e70bib48) 2017; 847
Weidenschilling (apjab3e70bib46) 1998; 279
Shakura (apjab3e70bib38) 1973; 24
Zheng (apjab3e70bib49) 2017; 836
Ward (apjab3e70bib43) 1981; 47
Nagasawa (apjab3e70bib30) 2014; 794
Fendyke (apjab3e70bib15) 2014; 437
Haisch (apjab3e70bib16) 2001; 553
Ward (apjab3e70bib45) 1976; 28
Sears (apjab3e70bib36) 1998; 498
Connolly (apjab3e70bib8) 2006
Muto (apjab3e70bib27) 2011; 737
References_xml – volume: 437
  start-page: 96
  year: 2014
  ident: apjab3e70bib15
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1867
– volume: 279
  start-page: 681
  year: 1998
  ident: apjab3e70bib46
  publication-title: Sci
  doi: 10.1126/science.279.5351.681
– volume: 498
  start-page: 773
  year: 1998
  ident: apjab3e70bib36
  publication-title: ApJ
  doi: 10.1086/305589
– volume: 342
  start-page: 1139
  year: 2003
  ident: apjab3e70bib3
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06604.x
– volume: 158
  start-page: 281
  year: 2002
  ident: apjab3e70bib7
  publication-title: Icar
  doi: 10.1006/icar.2002.6895
– volume: 70
  start-page: 35
  year: 1981
  ident: apjab3e70bib17
  publication-title: PThPS
  doi: 10.1143/PTPS.70.35
– volume: 344
  start-page: 1150
  year: 2014
  ident: apjab3e70bib21
  publication-title: Sci
  doi: 10.1126/science.1251766
– volume: 217
  start-page: 425
  year: 1977
  ident: apjab3e70bib23
  publication-title: ApJ
  doi: 10.1086/155591
– start-page: 211
  year: 1972
  ident: apjab3e70bib47
– volume: 635
  start-page: 578
  year: 2005
  ident: apjab3e70bib29
  publication-title: ApJ
  doi: 10.1086/497386
– volume: 553
  start-page: L153
  year: 2001
  ident: apjab3e70bib16
  publication-title: ApJL
  doi: 10.1086/320685
– volume: 23
  start-page: 710
  year: 1924
  ident: apjab3e70bib14
  publication-title: PhRv
  doi: 10.1103/PhysRev.23.710
– volume: 548
  start-page: 1029
  year: 2001
  ident: apjab3e70bib39
  publication-title: ApJ
  doi: 10.1086/319018
– volume: 574
  start-page: A52
  year: 2015
  ident: apjab3e70bib13
  publication-title: A&A
  doi: 10.1051/0004-6361/201424837
– volume: 752
  start-page: 27
  year: 2012
  ident: apjab3e70bib25
  publication-title: ApJ
  doi: 10.1088/0004-637X/752/1/27
– volume: 836
  start-page: 207
  year: 2017
  ident: apjab3e70bib49
  publication-title: ApJ
  doi: 10.3847/1538-4357/836/2/207
– volume: 676
  start-page: 728
  year: 2008
  ident: apjab3e70bib40
  publication-title: ApJ
  doi: 10.1086/526408
– volume: 410
  start-page: 293
  year: 2011
  ident: apjab3e70bib31
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17442.x
– volume: 666
  start-page: 447
  year: 2007
  ident: apjab3e70bib51
  publication-title: ApJ
  doi: 10.1086/520043
– volume: 586
  start-page: 1374
  year: 2003
  ident: apjab3e70bib28
  publication-title: ApJ
  doi: 10.1086/367884
– volume: 157
  start-page: 43
  year: 2002
  ident: apjab3e70bib19
  publication-title: Icar
  doi: 10.1006/icar.2001.6811
– start-page: 430
  year: 2003
  ident: apjab3e70bib1
  doi: 10.1017/CBO9780511535246
– volume: 4
  start-page: 36
  year: 1953
  ident: apjab3e70bib41
  publication-title: GeCoA
  doi: 10.1016/0016-7037(53)90064-7
– start-page: 3
  year: 1988
  ident: apjab3e70bib37
– start-page: 667
  year: 2014
  ident: apjab3e70bib5
– start-page: 383
  year: 2006
  ident: apjab3e70bib8
– volume: 419
  start-page: 166
  year: 1993
  ident: apjab3e70bib4
  publication-title: ApJ
  doi: 10.1086/173470
– volume: 576
  start-page: A52
  year: 2015
  ident: apjab3e70bib33
  publication-title: A&A
  doi: 10.1051/0004-6361/201424846
– start-page: 849
  year: 2005
  ident: apjab3e70bib9
– year: 1999
  ident: apjab3e70bib26
– volume: 847
  start-page: 52
  year: 2017
  ident: apjab3e70bib48
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa8620
– volume: 315
  start-page: 823
  year: 2000
  ident: apjab3e70bib32
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03466.x
– volume: 737
  start-page: 37
  year: 2011
  ident: apjab3e70bib27
  publication-title: ApJ
  doi: 10.1088/0004-637X/737/1/37
– volume: 514
  start-page: 344
  year: 1999
  ident: apjab3e70bib6
  publication-title: ApJ
  doi: 10.1086/306917
– volume: 24
  start-page: 337
  year: 1973
  ident: apjab3e70bib38
  publication-title: A&A
– volume: 818
  start-page: 103
  year: 2016
  ident: apjab3e70bib22
  publication-title: ApJ
  doi: 10.3847/0004-637X/818/2/103
– volume: 73
  start-page: 330
  year: 1988
  ident: apjab3e70bib44
  publication-title: Icar
  doi: 10.1016/0019-1035(88)90103-0
– volume: 660
  start-page: 791
  year: 2007
  ident: apjab3e70bib11
  publication-title: ApJ
  doi: 10.1086/512537
– year: 2019
  ident: apjab3e70bib50
  publication-title: ApJ
– volume: 28
  start-page: 441
  year: 1976
  ident: apjab3e70bib45
  publication-title: Icar
  doi: 10.1016/0019-1035(76)90117-2
– volume: 114
  start-page: 6712
  year: 2017
  ident: apjab3e70bib20
  publication-title: PNAS
  doi: 10.1073/pnas.1704461114
– volume: 477
  start-page: 5191
  year: 2018
  ident: apjab3e70bib34
  publication-title: MNRAS
  doi: 10.1093/mnras/sty949
– volume: 34
  start-page: 7
  year: 1999
  ident: apjab3e70bib24
  publication-title: M&PS
  doi: 10.1111/j.1945-5100.1999.tb01728.x
– volume: 35
  start-page: 577
  year: 2007
  ident: apjab3e70bib35
  publication-title: AREPS
  doi: 10.1146/annurev.earth.35.031306.140100
– volume: 47
  start-page: 1139
  year: 2012
  ident: apjab3e70bib10
  publication-title: M&PS
  doi: 10.1111/j.1945-5100.2012.01357.x
– volume: 373
  start-page: 494
  year: 1995
  ident: apjab3e70bib52
  publication-title: Natur
  doi: 10.1038/373494a0
– volume: 794
  start-page: L7
  year: 2014
  ident: apjab3e70bib30
  publication-title: ApJL
  doi: 10.1088/2041-8205/794/1/L7
– volume: 329
  start-page: 88
  year: 2019
  ident: apjab3e70bib42
  publication-title: Icar
  doi: 10.1016/j.icarus.2019.03.031
– volume: 794
  start-page: 91
  year: 2014
  ident: apjab3e70bib12
  publication-title: ApJ
  doi: 10.1088/0004-637X/794/1/91
– volume: 56
  start-page: 1756
  year: 1976
  ident: apjab3e70bib2
  publication-title: PThPh
  doi: 10.1143/PTP.56.1756
– volume: 153
  start-page: 430
  year: 2001
  ident: apjab3e70bib18
  publication-title: Icar
  doi: 10.1006/icar.2001.6682
– volume: 47
  start-page: 234
  year: 1981
  ident: apjab3e70bib43
  publication-title: Icar
  doi: 10.1016/0019-1035(81)90169-X
SSID ssj0004299
Score 2.3489163
Snippet Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules,...
SourceID hal
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 164
SubjectTerms Aluminum
Asteroids
Astrophysics
Chondrule
Computer simulation
Depletion
Earth and Planetary Astrophysics
Eccentricity
Heating
Inclusions
Jupiter
Mathematical models
Meteorites
meteorites, meteors, meteoroids
minor planets, asteroids: general
Numerical simulations
Orbital mechanics
Physics
Planet formation
Planetary evolution
Precursors
Protoplanetary disks
Rarefied gases
Resonance
shock waves
Solar system
Spheroids
Sweeping
Title Chondrule Formation by the Jovian Sweeping Secular Resonance
URI https://iopscience.iop.org/article/10.3847/1538-4357/ab3e70
https://www.proquest.com/docview/2365776044
https://hal.science/hal-02369612
Volume 883
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_8QPCl1o_iVVtCUaEPe7e3ySYX7MshPa7iF6j0HoQlyWYRam_Fu1P0r3fmsndiFSm-LGGZnd2dmSS_STIzAFveGakQCuDo51UkvHZRywgTFah7myP-j3NyFA-PZPdc7PfS3gzsTmNhyutq6K9jMyQKDiKk_s1xLG2M-yjO8qphLPcK_fV5KlxJ5v3r-OQpKDLRFfYVkeSqF_YoX-XwbE6avaQTkbP49hfD83jO6SzBxeRrw1GTP_XR0Nbdwz-JHN_5Ox_hQ4VFWTuQLsOM76_AentAq-Pl33u2w8btsPgxWIGFk9BahR97l2U_vxldedaZRD8ye88QTbL98hZNjp3eeU-xWOw0lN9ltFFA2T38Gpx3fp7tdaOqDkPkRBoP8Sqb0rQEl7QtqJvOpi2nUx1zZaxNE4suk0yUdtoUCSrY5ELpFKEU97kzheSfYK5f9v06MCtxUnY8d44LQb5pnBTNlo9zUWivvalBY6KJzFVJyqlWxlWGzgqJKyNxZSSuLIirBt-nT1yHBB1v0H5D5U7JKLN2t32Q0T1KpK8R7d02a7CNqsqqrjx4g9nmxDqeiJFLqpSMhfj8n2w2YBExmA7nAzdhbngz8l8Q5wzt17E94_WY_34E4JXzZQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEB96V5S-lFYrXmvbILXgw_b2Nl8X8OWwPU6rVlDpvS1JNosP9vbw7iz-985s9hSxSF-WsCRDmElmfpNkZgC-BG-VRiiA2i_oRATjk74VNilR9q5A_J8W5Cgen6jRhTgcy3FT57SOhammjer_hs2YKDiykPY3R13arfcoWnndtY4HnXanRdmCl5IrScnzf_HfD4GRmWnwr0gU1-N4T_lPKo_sUuuSXkW2cAZPVHRtd4Zv4HUDGNkgTu8tvAiTNdgczOgIu_pzy76yuh1PKGZrsHIaW-uwt39ZTYrrxVVgw2WIInO3DCEfO6xucF2ws78hUMAUO4s1chmd5lMKjvAOLoY_zvdHSVMsIfFCpnP8qp6yfcEV3d2Znney7400KdfWOZk59GtUpo03tsxQCrYQ2kjEOzwU3paKb0B7Uk3CJjCn0HJ6XnjPhSAHMs3KXj-khShNMMF2oLtkVe6bTOJU0OIqR4-CmJsTc3Nibh6Z24Hd-xHTmEXjmb7byP37bpT-ejQ4yukfZbs3CMlueh3YQeHkzX6bPUNsaym-h85IRWqtUiHe_yeZz7B6-n2YHx2c_PwArxAzmfiebwva8-tF-Ii4ZO4-1WvvDgjl1yU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chondrule+Formation+by+the+Jovian+Sweeping+Secular+Resonance&rft.jtitle=The+Astrophysical+journal&rft.au=Gong%2C+Munan&rft.au=Zheng%2C+Xiaochen&rft.au=Lin%2C+Douglas+N.+C.&rft.au=Silsbee%2C+Kedron&rft.date=2019-10-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=883&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fab3e70&rft.externalDocID=apjab3e70
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon