Chondrule Formation by the Jovian Sweeping Secular Resonance
Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism f...
Saved in:
Published in | The Astrophysical journal Vol. 883; no. 2; pp. 164 - 175 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.10.2019
IOP Publishing American Astronomical Society |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/ab3e70 |
Cover
Loading…
Abstract | Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal's size, as well as the physical environment and the probability for chondrule formation. We find that 50-2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%-9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τdep 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions. |
---|---|
AbstractList | Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal’s size, as well as the physical environment and the probability for chondrule formation. We find that 50–2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%–9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is
τ
dep
≈ 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions. Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal’s size, as well as the physical environment and the probability for chondrule formation. We find that 50–2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%–9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τ dep ≈ 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions. Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system.However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present anew scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Joviansweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbitalevolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate thedependence of eccentricity excitation on the planetesimal’s size, as well as the physical environment and theprobability for chondrule formation. We find that 50–2000 km planetesimals can obtain eccentricities larger than0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, andin the inner disk. The fraction of chondrule precursors that become chondrules is about 4%–9% between 1.5 and3 au. Our model implies that the disk depletion timescale is τdep ≈ 1 Myr, comparable to the age spread ofchondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calciumaluminum inclusions Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal's size, as well as the physical environment and the probability for chondrule formation. We find that 50-2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%-9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τdep 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions. |
Author | Lin, Douglas N. C. Gong, Munan Zheng, Xiaochen Silsbee, Kedron Mao, Shude Baruteau, Clement |
Author_xml | – sequence: 1 givenname: Munan orcidid: 0000-0003-1613-6263 surname: Gong fullname: Gong, Munan email: munan@mpe.mpg.de organization: Max-Planck Institute for Extraterrestrial Physics , Garching by Munich, D-85748, Germany – sequence: 2 givenname: Xiaochen orcidid: 0000-0002-7814-9185 surname: Zheng fullname: Zheng, Xiaochen organization: Tsinghua University Department of Astronomy and Center for Astrophysics, Beijing 10086, People's Republic of China – sequence: 3 givenname: Douglas N. C. surname: Lin fullname: Lin, Douglas N. C. organization: University of California Santa Cruz Department of Astronomy and Astrophysics, Santa Cruz, CA 95064, USA – sequence: 4 givenname: Kedron orcidid: 0000-0003-1572-0505 surname: Silsbee fullname: Silsbee, Kedron organization: Max-Planck Institute for Extraterrestrial Physics , Garching by Munich, D-85748, Germany – sequence: 5 givenname: Clement surname: Baruteau fullname: Baruteau, Clement organization: Institut de Recherche en Astrophysique et Planétologie (IRAP) , 14 avenue Edouard Belin, F-31400 Toulouse, France – sequence: 6 givenname: Shude orcidid: 0000-0001-8317-2788 surname: Mao fullname: Mao, Shude |
BackLink | https://hal.science/hal-02369612$$DView record in HAL |
BookMark | eNp9kMFLwzAUh4NMcJvePRY8CdYlTZM04GUM55SB4BS8hTRNXUaX1LSd7L-3tTJB0MsL7_H9Xh7fCAyssxqAcwSvcRKzCSI4CWNM2ESmWDN4BIaH0QAMIYRxSDF7PQGjqtp0bcT5ENzM1s5mvil0MHd-K2vjbJDug3qtgwe3M9IGqw-tS2PfgpVWTSF98KQrZ6VV-hQc57Ko9Nn3OwYv89vn2SJcPt7dz6bLUMUE1m2liMokxhSS9lOkUpIoTjjETKYpiVJOKY0YV1zmUZohmcWME0Ih1pmSOcVjcNnvXctClN5spd8LJ41YTJeim8EIU05RtEMte9GzpXfvja5qsXGNt-15ooUIYxTGcUvBnlLeVZXX-WEtgqLzKTp5opMnep9thP6KKFN_-aq9NMV_was-aFz5c8yf-CcMKYeC |
CitedBy_id | crossref_primary_10_3847_1538_4357_ad0965 crossref_primary_10_3847_1538_4357_abaef2 crossref_primary_10_3847_1538_4357_ac9bf6 crossref_primary_10_1016_j_gca_2021_12_027 |
Cites_doi | 10.1093/mnras/stt1867 10.1126/science.279.5351.681 10.1086/305589 10.1046/j.1365-8711.2003.06604.x 10.1006/icar.2002.6895 10.1143/PTPS.70.35 10.1126/science.1251766 10.1086/155591 10.1086/497386 10.1086/320685 10.1103/PhysRev.23.710 10.1086/319018 10.1051/0004-6361/201424837 10.1088/0004-637X/752/1/27 10.3847/1538-4357/836/2/207 10.1086/526408 10.1111/j.1365-2966.2010.17442.x 10.1086/520043 10.1086/367884 10.1006/icar.2001.6811 10.1017/CBO9780511535246 10.1016/0016-7037(53)90064-7 10.1086/173470 10.1051/0004-6361/201424846 10.3847/1538-4357/aa8620 10.1046/j.1365-8711.2000.03466.x 10.1088/0004-637X/737/1/37 10.1086/306917 10.3847/0004-637X/818/2/103 10.1016/0019-1035(88)90103-0 10.1086/512537 10.1016/0019-1035(76)90117-2 10.1073/pnas.1704461114 10.1093/mnras/sty949 10.1111/j.1945-5100.1999.tb01728.x 10.1146/annurev.earth.35.031306.140100 10.1111/j.1945-5100.2012.01357.x 10.1038/373494a0 10.1088/2041-8205/794/1/L7 10.1016/j.icarus.2019.03.031 10.1088/0004-637X/794/1/91 10.1143/PTP.56.1756 10.1006/icar.2001.6682 10.1016/0019-1035(81)90169-X |
ContentType | Journal Article |
Copyright | 2019. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Oct 01, 2019 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Oct 01, 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M 1XC VOOES |
DOI | 10.3847/1538-4357/ab3e70 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Chondrule Formation by the Jovian Sweeping Secular Resonance |
EISSN | 1538-4357 |
ExternalDocumentID | oai_HAL_hal_02369612v1 10_3847_1538_4357_ab3e70 apjab3e70 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M 1XC VOOES |
ID | FETCH-LOGICAL-c450t-c4616a8436052991cb58c959037abb52b9666279c9af2bd1ad47955603edcaf63 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Sat Jun 21 06:31:33 EDT 2025 Wed Aug 13 09:18:02 EDT 2025 Thu Apr 24 23:07:22 EDT 2025 Tue Jul 01 03:24:10 EDT 2025 Wed Aug 21 03:33:06 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-c4616a8436052991cb58c959037abb52b9666279c9af2bd1ad47955603edcaf63 |
Notes | AAS14141 The Solar System, Exoplanets, and Astrobiology ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1613-6263 0000-0003-1572-0505 0000-0002-7814-9185 0000-0001-8317-2788 0000-0002-2672-3456 |
OpenAccessLink | https://hal.science/hal-02369612 |
PQID | 2365776044 |
PQPubID | 4562441 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_02369612v1 proquest_journals_2365776044 crossref_citationtrail_10_3847_1538_4357_ab3e70 crossref_primary_10_3847_1538_4357_ab3e70 iop_journals_10_3847_1538_4357_ab3e70 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2019 |
Publisher | The American Astronomical Society IOP Publishing American Astronomical Society |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing – name: American Astronomical Society |
References | Dullemond (apjab3e70bib12) 2014; 794 Kruijer (apjab3e70bib21) 2014; 344 Whipple (apjab3e70bib47) 1972 Bryden (apjab3e70bib6) 1999; 514 Meibom (apjab3e70bib24) 1999; 34 Hayashi (apjab3e70bib17) 1981; 70 Epstein (apjab3e70bib14) 1924; 23 Ward (apjab3e70bib44) 1988; 73 Zhou (apjab3e70bib51) 2007; 666 Papaloizou (apjab3e70bib32) 2000; 315 Baruteau (apjab3e70bib5) 2014 Urey (apjab3e70bib41) 1953; 4 Sears (apjab3e70bib37) 1988 Desch (apjab3e70bib10) 2012; 47 Murray (apjab3e70bib26) 1999 Richert (apjab3e70bib34) 2018; 477 Shu (apjab3e70bib39) 2001; 548 Scott (apjab3e70bib35) 2007; 35 Iida (apjab3e70bib18) 2001; 153 Adachi (apjab3e70bib2) 1976; 56 Nagasawa (apjab3e70bib29) 2005; 635 Kruijer (apjab3e70bib20) 2017; 114 Paardekooper (apjab3e70bib31) 2011; 410 Dürmann (apjab3e70bib13) 2015; 574 Dobbs-Dixon (apjab3e70bib11) 2007; 660 Mathis (apjab3e70bib23) 1977; 217 Mann (apjab3e70bib22) 2016; 818 Walsh (apjab3e70bib42) 2019; 329 Aarseth (apjab3e70bib1) 2003 Zheng (apjab3e70bib50) 2019 Ciesla (apjab3e70bib7) 2002; 158 Morris (apjab3e70bib25) 2012; 752 Nagasawa (apjab3e70bib28) 2003; 586 Armitage (apjab3e70bib3) 2003; 342 Ribas (apjab3e70bib33) 2015; 576 Artymowicz (apjab3e70bib4) 1993; 419 Desch (apjab3e70bib9) 2005 Kominami (apjab3e70bib19) 2002; 157 Zuckerman (apjab3e70bib52) 1995; 373 Thommes (apjab3e70bib40) 2008; 676 Xu (apjab3e70bib48) 2017; 847 Weidenschilling (apjab3e70bib46) 1998; 279 Shakura (apjab3e70bib38) 1973; 24 Zheng (apjab3e70bib49) 2017; 836 Ward (apjab3e70bib43) 1981; 47 Nagasawa (apjab3e70bib30) 2014; 794 Fendyke (apjab3e70bib15) 2014; 437 Haisch (apjab3e70bib16) 2001; 553 Ward (apjab3e70bib45) 1976; 28 Sears (apjab3e70bib36) 1998; 498 Connolly (apjab3e70bib8) 2006 Muto (apjab3e70bib27) 2011; 737 |
References_xml | – volume: 437 start-page: 96 year: 2014 ident: apjab3e70bib15 publication-title: MNRAS doi: 10.1093/mnras/stt1867 – volume: 279 start-page: 681 year: 1998 ident: apjab3e70bib46 publication-title: Sci doi: 10.1126/science.279.5351.681 – volume: 498 start-page: 773 year: 1998 ident: apjab3e70bib36 publication-title: ApJ doi: 10.1086/305589 – volume: 342 start-page: 1139 year: 2003 ident: apjab3e70bib3 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06604.x – volume: 158 start-page: 281 year: 2002 ident: apjab3e70bib7 publication-title: Icar doi: 10.1006/icar.2002.6895 – volume: 70 start-page: 35 year: 1981 ident: apjab3e70bib17 publication-title: PThPS doi: 10.1143/PTPS.70.35 – volume: 344 start-page: 1150 year: 2014 ident: apjab3e70bib21 publication-title: Sci doi: 10.1126/science.1251766 – volume: 217 start-page: 425 year: 1977 ident: apjab3e70bib23 publication-title: ApJ doi: 10.1086/155591 – start-page: 211 year: 1972 ident: apjab3e70bib47 – volume: 635 start-page: 578 year: 2005 ident: apjab3e70bib29 publication-title: ApJ doi: 10.1086/497386 – volume: 553 start-page: L153 year: 2001 ident: apjab3e70bib16 publication-title: ApJL doi: 10.1086/320685 – volume: 23 start-page: 710 year: 1924 ident: apjab3e70bib14 publication-title: PhRv doi: 10.1103/PhysRev.23.710 – volume: 548 start-page: 1029 year: 2001 ident: apjab3e70bib39 publication-title: ApJ doi: 10.1086/319018 – volume: 574 start-page: A52 year: 2015 ident: apjab3e70bib13 publication-title: A&A doi: 10.1051/0004-6361/201424837 – volume: 752 start-page: 27 year: 2012 ident: apjab3e70bib25 publication-title: ApJ doi: 10.1088/0004-637X/752/1/27 – volume: 836 start-page: 207 year: 2017 ident: apjab3e70bib49 publication-title: ApJ doi: 10.3847/1538-4357/836/2/207 – volume: 676 start-page: 728 year: 2008 ident: apjab3e70bib40 publication-title: ApJ doi: 10.1086/526408 – volume: 410 start-page: 293 year: 2011 ident: apjab3e70bib31 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17442.x – volume: 666 start-page: 447 year: 2007 ident: apjab3e70bib51 publication-title: ApJ doi: 10.1086/520043 – volume: 586 start-page: 1374 year: 2003 ident: apjab3e70bib28 publication-title: ApJ doi: 10.1086/367884 – volume: 157 start-page: 43 year: 2002 ident: apjab3e70bib19 publication-title: Icar doi: 10.1006/icar.2001.6811 – start-page: 430 year: 2003 ident: apjab3e70bib1 doi: 10.1017/CBO9780511535246 – volume: 4 start-page: 36 year: 1953 ident: apjab3e70bib41 publication-title: GeCoA doi: 10.1016/0016-7037(53)90064-7 – start-page: 3 year: 1988 ident: apjab3e70bib37 – start-page: 667 year: 2014 ident: apjab3e70bib5 – start-page: 383 year: 2006 ident: apjab3e70bib8 – volume: 419 start-page: 166 year: 1993 ident: apjab3e70bib4 publication-title: ApJ doi: 10.1086/173470 – volume: 576 start-page: A52 year: 2015 ident: apjab3e70bib33 publication-title: A&A doi: 10.1051/0004-6361/201424846 – start-page: 849 year: 2005 ident: apjab3e70bib9 – year: 1999 ident: apjab3e70bib26 – volume: 847 start-page: 52 year: 2017 ident: apjab3e70bib48 publication-title: ApJ doi: 10.3847/1538-4357/aa8620 – volume: 315 start-page: 823 year: 2000 ident: apjab3e70bib32 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03466.x – volume: 737 start-page: 37 year: 2011 ident: apjab3e70bib27 publication-title: ApJ doi: 10.1088/0004-637X/737/1/37 – volume: 514 start-page: 344 year: 1999 ident: apjab3e70bib6 publication-title: ApJ doi: 10.1086/306917 – volume: 24 start-page: 337 year: 1973 ident: apjab3e70bib38 publication-title: A&A – volume: 818 start-page: 103 year: 2016 ident: apjab3e70bib22 publication-title: ApJ doi: 10.3847/0004-637X/818/2/103 – volume: 73 start-page: 330 year: 1988 ident: apjab3e70bib44 publication-title: Icar doi: 10.1016/0019-1035(88)90103-0 – volume: 660 start-page: 791 year: 2007 ident: apjab3e70bib11 publication-title: ApJ doi: 10.1086/512537 – year: 2019 ident: apjab3e70bib50 publication-title: ApJ – volume: 28 start-page: 441 year: 1976 ident: apjab3e70bib45 publication-title: Icar doi: 10.1016/0019-1035(76)90117-2 – volume: 114 start-page: 6712 year: 2017 ident: apjab3e70bib20 publication-title: PNAS doi: 10.1073/pnas.1704461114 – volume: 477 start-page: 5191 year: 2018 ident: apjab3e70bib34 publication-title: MNRAS doi: 10.1093/mnras/sty949 – volume: 34 start-page: 7 year: 1999 ident: apjab3e70bib24 publication-title: M&PS doi: 10.1111/j.1945-5100.1999.tb01728.x – volume: 35 start-page: 577 year: 2007 ident: apjab3e70bib35 publication-title: AREPS doi: 10.1146/annurev.earth.35.031306.140100 – volume: 47 start-page: 1139 year: 2012 ident: apjab3e70bib10 publication-title: M&PS doi: 10.1111/j.1945-5100.2012.01357.x – volume: 373 start-page: 494 year: 1995 ident: apjab3e70bib52 publication-title: Natur doi: 10.1038/373494a0 – volume: 794 start-page: L7 year: 2014 ident: apjab3e70bib30 publication-title: ApJL doi: 10.1088/2041-8205/794/1/L7 – volume: 329 start-page: 88 year: 2019 ident: apjab3e70bib42 publication-title: Icar doi: 10.1016/j.icarus.2019.03.031 – volume: 794 start-page: 91 year: 2014 ident: apjab3e70bib12 publication-title: ApJ doi: 10.1088/0004-637X/794/1/91 – volume: 56 start-page: 1756 year: 1976 ident: apjab3e70bib2 publication-title: PThPh doi: 10.1143/PTP.56.1756 – volume: 153 start-page: 430 year: 2001 ident: apjab3e70bib18 publication-title: Icar doi: 10.1006/icar.2001.6682 – volume: 47 start-page: 234 year: 1981 ident: apjab3e70bib43 publication-title: Icar doi: 10.1016/0019-1035(81)90169-X |
SSID | ssj0004299 |
Score | 2.3489163 |
Snippet | Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules,... |
SourceID | hal proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 164 |
SubjectTerms | Aluminum Asteroids Astrophysics Chondrule Computer simulation Depletion Earth and Planetary Astrophysics Eccentricity Heating Inclusions Jupiter Mathematical models Meteorites meteorites, meteors, meteoroids minor planets, asteroids: general Numerical simulations Orbital mechanics Physics Planet formation Planetary evolution Precursors Protoplanetary disks Rarefied gases Resonance shock waves Solar system Spheroids Sweeping |
Title | Chondrule Formation by the Jovian Sweeping Secular Resonance |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ab3e70 https://www.proquest.com/docview/2365776044 https://hal.science/hal-02369612 |
Volume | 883 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_8QPCl1o_iVVtCUaEPe7e3ySYX7MshPa7iF6j0HoQlyWYRam_Fu1P0r3fmsndiFSm-LGGZnd2dmSS_STIzAFveGakQCuDo51UkvHZRywgTFah7myP-j3NyFA-PZPdc7PfS3gzsTmNhyutq6K9jMyQKDiKk_s1xLG2M-yjO8qphLPcK_fV5KlxJ5v3r-OQpKDLRFfYVkeSqF_YoX-XwbE6avaQTkbP49hfD83jO6SzBxeRrw1GTP_XR0Nbdwz-JHN_5Ox_hQ4VFWTuQLsOM76_AentAq-Pl33u2w8btsPgxWIGFk9BahR97l2U_vxldedaZRD8ye88QTbL98hZNjp3eeU-xWOw0lN9ltFFA2T38Gpx3fp7tdaOqDkPkRBoP8Sqb0rQEl7QtqJvOpi2nUx1zZaxNE4suk0yUdtoUCSrY5ELpFKEU97kzheSfYK5f9v06MCtxUnY8d44LQb5pnBTNlo9zUWivvalBY6KJzFVJyqlWxlWGzgqJKyNxZSSuLIirBt-nT1yHBB1v0H5D5U7JKLN2t32Q0T1KpK8R7d02a7CNqsqqrjx4g9nmxDqeiJFLqpSMhfj8n2w2YBExmA7nAzdhbngz8l8Q5wzt17E94_WY_34E4JXzZQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEB96V5S-lFYrXmvbILXgw_b2Nl8X8OWwPU6rVlDpvS1JNosP9vbw7iz-985s9hSxSF-WsCRDmElmfpNkZgC-BG-VRiiA2i_oRATjk74VNilR9q5A_J8W5Cgen6jRhTgcy3FT57SOhammjer_hs2YKDiykPY3R13arfcoWnndtY4HnXanRdmCl5IrScnzf_HfD4GRmWnwr0gU1-N4T_lPKo_sUuuSXkW2cAZPVHRtd4Zv4HUDGNkgTu8tvAiTNdgczOgIu_pzy76yuh1PKGZrsHIaW-uwt39ZTYrrxVVgw2WIInO3DCEfO6xucF2ws78hUMAUO4s1chmd5lMKjvAOLoY_zvdHSVMsIfFCpnP8qp6yfcEV3d2Znney7400KdfWOZk59GtUpo03tsxQCrYQ2kjEOzwU3paKb0B7Uk3CJjCn0HJ6XnjPhSAHMs3KXj-khShNMMF2oLtkVe6bTOJU0OIqR4-CmJsTc3Nibh6Z24Hd-xHTmEXjmb7byP37bpT-ejQ4yukfZbs3CMlueh3YQeHkzX6bPUNsaym-h85IRWqtUiHe_yeZz7B6-n2YHx2c_PwArxAzmfiebwva8-tF-Ii4ZO4-1WvvDgjl1yU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chondrule+Formation+by+the+Jovian+Sweeping+Secular+Resonance&rft.jtitle=The+Astrophysical+journal&rft.au=Gong%2C+Munan&rft.au=Zheng%2C+Xiaochen&rft.au=Lin%2C+Douglas+N.+C.&rft.au=Silsbee%2C+Kedron&rft.date=2019-10-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=883&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fab3e70&rft.externalDocID=apjab3e70 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |