Chondrule Formation by the Jovian Sweeping Secular Resonance

Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism f...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 883; no. 2; pp. 164 - 175
Main Authors Gong, Munan, Zheng, Xiaochen, Lin, Douglas N. C., Silsbee, Kedron, Baruteau, Clement, Mao, Shude
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.10.2019
IOP Publishing
American Astronomical Society
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ab3e70

Cover

Loading…
More Information
Summary:Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal's size, as well as the physical environment and the probability for chondrule formation. We find that 50-2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%-9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τdep 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions.
Bibliography:AAS14141
The Solar System, Exoplanets, and Astrobiology
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ab3e70