Inflammatory and Noninflammatory Itch: Implications in Pathophysiology-Directed Treatments
Itch is the main chief complaint in patients visiting dermatologic clinics and has the ability to deeply impair life quality. Itch results from activation of cutaneous nerve endings by noxious stimuli such as inflammatory mediators, neurotransmitters and neuropeptides, causing itch signal transducti...
Saved in:
Published in | International journal of molecular sciences Vol. 18; no. 7; p. 1485 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
10.07.2017
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Itch is the main chief complaint in patients visiting dermatologic clinics and has the ability to deeply impair life quality. Itch results from activation of cutaneous nerve endings by noxious stimuli such as inflammatory mediators, neurotransmitters and neuropeptides, causing itch signal transduction from peripheral skin, through the spinal cord and thalamus, to the brain cortex. Primarily noninflammatory diseases, such as uremic pruritus, cause itch through certain pruritogens in the skin. In inflammatory skin diseases, atopic dermatitis (AD) is the prototypic disease causing intensive itch by aberrant skin inflammation and epidermal barrier disruption. Recent understanding of disease susceptibility, severity markers, and mechanisms have helped to develop targeted therapy for itch in AD, including monoclonal antibodies against IL-4, IL-13, thymic stromal lymphopoietin (TSLP), IgE and IL-31. Promising effects have been observed in some of them. In this review, we summarized targeted therapies for inflammatory itch in AD and for managing abnormal itch transductions in other common itching skin diseases. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1422-0067 1422-0067 |
DOI: | 10.3390/ijms18071485 |