Mechanistic Insights of an Immunological Adverse Event Induced by an Anti-KIT Antibody Drug Conjugate and Mitigation Strategies

Hypersensitivity reactions (HSRs) were observed in three patients dosed in a phase I clinical trial treated with LOP628, a KIT targeted antibody drug conjugate. Mast cell degranulation was implicated as the root cause for the HSR. Underlying mechanism of this reported HSR was investigated with an ai...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 24; no. 14; pp. 3465 - 3474
Main Authors L'Italien, Lawrence, Orozco, Olivia, Abrams, Tinya, Cantagallo, Lisa, Connor, Anu, Desai, Jayesh, Ebersbach, Hilmar, Gelderblom, Hans, Hoffmaster, Keith, Lees, Emma, Maacke, Heiko, Schleyer, Siew, Skegro, Darko, Lee-Hoeflich, Si Tuen
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research Inc 15.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hypersensitivity reactions (HSRs) were observed in three patients dosed in a phase I clinical trial treated with LOP628, a KIT targeted antibody drug conjugate. Mast cell degranulation was implicated as the root cause for the HSR. Underlying mechanism of this reported HSR was investigated with an aim to identifying potential mitigation strategies. Biomarkers for mast cell degranulation were evaluated in patient samples and in human peripheral blood cell-derived mast cell (PBC-MC) cultures treated with LOP628. Mitigation strategies interrogated include pretreatment of mast cells with small molecule inhibitors that target KIT or signaling pathways downstream of FcεR1, FcγR, and treatment with Fc silencing antibody formats. Transient elevation of serum tryptase was observed in patients 1-hour posttreatment of LOP628. In agreement with the clinical observation, LOP628 and its parental antibody LMJ729 induced degranulation of human PBC-MCs. Unexpectedly, KIT small molecule inhibitors did not abrogate mast cell degranulation. By contrast, small molecule inhibitors that targeted pathways downstream of Fc receptors blunted degranulation. Furthermore, interference of the KIT antibody to engage Fc receptors by pre-incubation with IgG or using engineered Fc silencing mutations reduced or prevented degranulation. Characterization of Fcγ receptors revealed human PBC-MCs expressed both FcγRII and low levels of FcγRI. Interestingly, increasing the level of FcγRI upon addition of IFNγ, significantly enhanced LOP628-mediated mast cell degranulation. Our data suggest LOP628-mediated mast cell degranulation is the likely cause of HSR observed in the clinic due to co-engagement of the FcγR and KIT, resulting in mast cell activation. .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.ccr-17-3786