Conjugated linoleic acid isomers strongly improve the redox status of bovine mammary epithelial cells (BME-UV1)
Some studies have shown the protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation in animal models, but no information is available about CLA and changes in oxidative status of the bovine mammary gland. The objectives of the study were to assess...
Saved in:
Published in | Journal of dairy science Vol. 98; no. 10; pp. 7071 - 7082 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Some studies have shown the protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation in animal models, but no information is available about CLA and changes in oxidative status of the bovine mammary gland. The objectives of the study were to assess in vitro the effect of CLA on the cellular antioxidant response of bovine mammary cells, to examine whether CLA isomers could play a role in cell protection against the oxidative stress, and to study the molecular mechanism involved. For the study, BME-UV1 cells, a bovine mammary epithelial cell line, were used as the experimental model. The BME-UV1 cells were treated with complete medium containing 50 µM cis-9,trans-11 CLA (c9,t11 CLA), trans-10,cis-12 CLA (t10,c12 CLA), and CLA mixture (1:1, cis-9,trans-11: trans-10,cis-12 CLA). To monitor cellular uptake of CLA isomers, cells and culture medium were collected at 0, 3, and 48h from CLA addition for lipid extraction and fatty acid analyses. To assess the cellular antioxidant response, glutathione (GSH/GSSH), NADPH, and γ-glutamyl-cysteine ligase activity was measured after 48h from addition of CLA. Cytoplasmic superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and glutathione reductase activities and mRNA were also determined. Intracellular reactive oxygen species and thiobarbituric acid reactive substance production were assessed in cells supplemented with CLA isomers. Cell viability after 3h to H2O2 exposure was assessed to evaluate and to compare the potential protection of different CLA isomers against H2O2-induced oxidative stress. Mammary cells readily picked up all CLA isomers, their accumulation was time dependent, and main metabolites at 48h are two 18:3 isomers. The CLA treatment induced an intracellular GSH increase, matched by high concentration of NADPH, and an increase of γ-glutamyl-cysteine ligase activity mainly in cells treated with the t10,c12 CLA isomer. The CLA isomer treatment of bovine mammary cells increased superoxide dismutase, glutathione peroxidase, and glutathione S-transferase activity and decreased glutathione reductase activity, but no changes in gene expression of these antioxidant enzymes were observed. Cells supplemented with CLA isomers showed a reduction in intracellular reactive oxygen species and thiobarbituric acid reactive substance levels. All CLA isomers were able to enhance cell resistance against H2O2-induced oxidative stress. These suggest an antioxidant role of CLA, in particular of t10,c12 CLA, by developing a significantly high redox status in cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2015-9787 |