Numerical Simulation of growth and collapse of a bubble induced by a pulsed microheater
A three-dimensional numerical analysis of the growth and collapse of a bubble on a microheater is presented. SIMULENT code, which solves the full Navier-Stokes equations with surface tension effects, is used in these simulations. A volume of fluid (VOF) interface tracking algorithm is used to track...
Saved in:
Published in | Journal of microelectromechanical systems Vol. 13; no. 5; pp. 857 - 869 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A three-dimensional numerical analysis of the growth and collapse of a bubble on a microheater is presented. SIMULENT code, which solves the full Navier-Stokes equations with surface tension effects, is used in these simulations. A volume of fluid (VOF) interface tracking algorithm is used to track the evolution of the free surface flow. A one-dimensional heat conduction model is used to consider the energy transfer between the bubble and the surrounding liquid, as well as the temperature distribution in the liquid layer. Details of the velocity and pressure distribution in the liquid during the growth and collapse of the vapor bubble are obtained. Numerical results for the growth and the collapse of the bubbles are compared with those of experiments under similar conditions. Comparisons show that the volume evolution of the vapor bubble is well predicted by the numerical model. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2004.832180 |