Scale Features of a Network Echo Mechanism: Case Study for the Different Internet Paths

We have investigated dynamics of the Internet performance through the assessment of scaling features of a network ICMP echo mechanism or pinging. Time series of round-trip times (RTT) from the host computer to 5 destination hosts and back, recorded during three consecutive days and nights, have been...

Full description

Saved in:
Bibliographic Details
Published inJournal of Computer Networks and Communications Vol. 2020; no. 2020; pp. 1 - 9
Main Authors Laliashvili, Levan, Tsveraidze, Zurab, Prangishvili, Archil, Matcharashvili, Teimuraz
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have investigated dynamics of the Internet performance through the assessment of scaling features of a network ICMP echo mechanism or pinging. Time series of round-trip times (RTT) from the host computer to 5 destination hosts and back, recorded during three consecutive days and nights, have been used. To assess correlation and scaling features of network echo mechanism, we used method of detrended fluctuation analysis (DFA) for RTT data sets. It was shown that for different, 10 minute long periods of day and night observations, RTT data sets mostly fluctuate within a narrow range, though sometimes we observe strong sharp spikes. RTT variations mostly reveal persistent behavior. DFA fluctuation curves often are characterized by crossovers indication stronger or lesser changes in the dynamics of network performance. Distribution function of DFA scaling exponents of considered RTT time series mostly was asymmetric with long tail on the right hand side. Dynamical changes occurring in the scaling features of Internet network as assessed by RTT fluctuations do not depend on the location of the host and destination nodes. Larger delays in round-trip time responses make the scaling behavior of the RTT series complicated and strongly influence their long range correlation features.
ISSN:2090-7141
2090-715X
DOI:10.1155/2020/4065048