Regulation of electrospun scaffold stiffness via coaxial core diameter

Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate s...

Full description

Saved in:
Bibliographic Details
Published inActa biomaterialia Vol. 7; no. 3; pp. 1133 - 1139
Main Authors Drexler, J.W., Powell, H.M.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate stiffness; however, they are not ideal as the processing can change substrate morphology, density or chemistry. Coaxial electrospinning was investigated as a fabrication method to produce scaffolds with tunable stiffness and strength without changing architecture or surface chemistry. Core solution concentration, solvent and feed rate were utilized to control core diameter with higher solution concentration and feed rate positively correlating with increased fiber diameter and stiffness. Coaxial scaffolds electrospun with an 8wt./vol.% polycaprolactone (PCL)-HFP solution at 1mlh–1 formed scaffolds with an average core diameter of 1.1±0.2μm and stiffness of 0.027±3.3×10–3Nmm–1. In contrast, fibers which were 2.6±0.1μm in core diameter yielded scaffolds with a stiffness of 0.065±4.7×10–3Nmm–1. Strength and stiffness positively correlated with core diameter with no significant difference in total fiber diameter and interfiber distance observed in as-spun scaffolds. These data indicate that coaxial core diameter can be utilized to tailor mechanical properties of three-dimensional scaffolds and would provide an ideal scaffold for assessing the effect of scaffold mechanics on cell behavior.
AbstractList Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate stiffness; however, they are not ideal as the processing can change substrate morphology, density or chemistry. Coaxial electrospinning was investigated as a fabrication method to produce scaffolds with tunable stiffness and strength without changing architecture or surface chemistry. Core solution concentration, solvent and feed rate were utilized to control core diameter with higher solution concentration and feed rate positively correlating with increased fiber diameter and stiffness. Coaxial scaffolds electrospun with an 8 wt./vol.% polycaprolactone (PCL)-HFP solution at 1 ml h(-1) formed scaffolds with an average core diameter of 1.1±0.2 μm and stiffness of 0.027±3.3×10(-3) N mm(-1). In contrast, fibers which were 2.6±0.1 μm in core diameter yielded scaffolds with a stiffness of 0.065±4.7×10(-3) N mm(-1). Strength and stiffness positively correlated with core diameter with no significant difference in total fiber diameter and interfiber distance observed in as-spun scaffolds. These data indicate that coaxial core diameter can be utilized to tailor mechanical properties of three-dimensional scaffolds and would provide an ideal scaffold for assessing the effect of scaffold mechanics on cell behavior.
Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate stiffness; however, they are not ideal as the processing can change substrate morphology, density or chemistry. Coaxial electrospinning was investigated as a fabrication method to produce scaffolds with tunable stiffness and strength without changing architecture or surface chemistry. Core solution concentration, solvent and feed rate were utilized to control core diameter with higher solution concentration and feed rate positively correlating with increased fiber diameter and stiffness. Coaxial scaffolds electrospun with an 8 wt./vol.% polycaprolactone (PCL)-HFP solution at 1 ml h-1 formed scaffolds with an average core diameter of 1.1 +/- 0.2 mu m and stiffness of 0.027 +/- 3.3 x 10-3 N mm-1. In contrast, fibers which were 2.6 +/- 0.1 mu m in core diameter yielded scaffolds with a stiffness of 0.065 +/- 4.7 x 10-3 N mm-1. Strength and stiffness positively correlated with core diameter with no significant difference in total fiber diameter and interfiber distance observed in as-spun scaffolds. These data indicate that coaxial core diameter can be utilized to tailor mechanical properties of three-dimensional scaffolds and would provide an ideal scaffold for assessing the effect of scaffold mechanics on cell behavior.
Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate stiffness; however, they are not ideal as the processing can change substrate morphology, density or chemistry. Coaxial electrospinning was investigated as a fabrication method to produce scaffolds with tunable stiffness and strength without changing architecture or surface chemistry. Core solution concentration, solvent and feed rate were utilized to control core diameter with higher solution concentration and feed rate positively correlating with increased fiber diameter and stiffness. Coaxial scaffolds electrospun with an 8wt./vol.% polycaprolactone (PCL)-HFP solution at 1mlh–¹ formed scaffolds with an average core diameter of 1.1±0.2μm and stiffness of 0.027±3.3×10–³Nmm–¹. In contrast, fibers which were 2.6±0.1μm in core diameter yielded scaffolds with a stiffness of 0.065±4.7×10–³Nmm–¹. Strength and stiffness positively correlated with core diameter with no significant difference in total fiber diameter and interfiber distance observed in as-spun scaffolds. These data indicate that coaxial core diameter can be utilized to tailor mechanical properties of three-dimensional scaffolds and would provide an ideal scaffold for assessing the effect of scaffold mechanics on cell behavior.
Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate stiffness; however, they are not ideal as the processing can change substrate morphology, density or chemistry. Coaxial electrospinning was investigated as a fabrication method to produce scaffolds with tunable stiffness and strength without changing architecture or surface chemistry. Core solution concentration, solvent and feed rate were utilized to control core diameter with higher solution concentration and feed rate positively correlating with increased fiber diameter and stiffness. Coaxial scaffolds electrospun with an 8wt./vol.% polycaprolactone (PCL)-HFP solution at 1mlh–1 formed scaffolds with an average core diameter of 1.1±0.2μm and stiffness of 0.027±3.3×10–3Nmm–1. In contrast, fibers which were 2.6±0.1μm in core diameter yielded scaffolds with a stiffness of 0.065±4.7×10–3Nmm–1. Strength and stiffness positively correlated with core diameter with no significant difference in total fiber diameter and interfiber distance observed in as-spun scaffolds. These data indicate that coaxial core diameter can be utilized to tailor mechanical properties of three-dimensional scaffolds and would provide an ideal scaffold for assessing the effect of scaffold mechanics on cell behavior.
Author Drexler, J.W.
Powell, H.M.
Author_xml – sequence: 1
  givenname: J.W.
  surname: Drexler
  fullname: Drexler, J.W.
  organization: Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
– sequence: 2
  givenname: H.M.
  surname: Powell
  fullname: Powell, H.M.
  email: powell.299@osu.edu, powellh@matsceng.ohio-state.edu
  organization: Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20977951$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1LHTEQhkNR6kf7D4runb3Z03wneyOIaBUEoa3XIZtMJIc9m2OyK-2_N6dre6lXMwzPvDO87xHaG9MICH0heEUwkd_WK-umPqYVxX9HK0zFB3RItNKtElLv1V5x2iosyQE6KmWNMdOE6o_ogOJOqU6QQ3T9Ax7nwU4xjU0KDQzgppzKdh6b4mwIafBNmWIII5TSPEfbuGR_RzvUmqHx0W5ggvwJ7Qc7FPj8Wo_Rw_XVr8ub9u7---3lxV3ruMBT22lNgWLdYdUB6SEoZimWwfcqCOetJ0x1MnAuuvqr8Fx5jvugPGNSSofZMTpbdLc5Pc1QJrOJxcEw2BHSXExHNJaaMvkuqbmWWtTjlfz6JkmkIqxaznVF-YK66lHJEMw2x43NfwzBZpeKWZslFbNLZTetqdS1k9cLc78B_3_pXwwVOF2AYJOxjzkW8_CzKghcVZQWrBLnCwHV3ecI2RQXYXTgY66RGZ_i2z-8AIQnqTc
CitedBy_id crossref_primary_10_1021_bm301101r
crossref_primary_10_1016_j_actbio_2019_11_051
crossref_primary_10_1016_j_porgcoat_2020_105858
crossref_primary_10_3389_fbioe_2020_567842
crossref_primary_10_1016_j_actbio_2018_09_014
crossref_primary_10_1021_acsami_9b00293
crossref_primary_10_1016_j_jmbbm_2015_12_034
crossref_primary_10_1002_ceat_201400323
crossref_primary_10_1016_j_msec_2020_111354
crossref_primary_10_3390_ma11071116
crossref_primary_10_1002_marc_201200648
crossref_primary_10_1039_D1BM00503K
crossref_primary_10_1177_1849543518803538
crossref_primary_10_1016_j_colsurfb_2024_113864
crossref_primary_10_1016_j_carbpol_2011_10_054
crossref_primary_10_1089_ten_tea_2013_0687
crossref_primary_10_1016_j_apsusc_2015_02_037
crossref_primary_10_1021_am405101k
crossref_primary_10_1016_j_bioactmat_2021_12_005
crossref_primary_10_1002_app_41982
crossref_primary_10_1002_bip_22120
crossref_primary_10_1016_j_jcis_2016_11_062
crossref_primary_10_1002_pen_23426
crossref_primary_10_1016_j_reprotox_2022_07_003
crossref_primary_10_1016_j_matbio_2019_11_005
crossref_primary_10_1177_0885328217749962
crossref_primary_10_1016_j_actbio_2019_09_029
crossref_primary_10_1089_ten_tea_2020_0090
crossref_primary_10_1002_adv_21475
crossref_primary_10_1002_app_42571
crossref_primary_10_1007_s42765_023_00281_9
crossref_primary_10_1002_pat_3408
crossref_primary_10_1016_j_actbio_2016_12_034
crossref_primary_10_1177_09544089211024065
crossref_primary_10_1016_j_matlet_2015_02_120
crossref_primary_10_1089_ten_tea_2012_0338
crossref_primary_10_1021_acsami_9b08341
crossref_primary_10_3390_gels2010012
Cites_doi 10.1016/j.jconrel.2005.08.006
10.1016/S0006-3495(00)76279-5
10.1021/ma0517749
10.1002/polb.10015
10.1002/adma.200400883
10.1016/j.orthres.2004.02.001
10.1089/ten.tea.2007.0294
10.1021/cm049580f
10.1016/S0032-3861(00)00250-0
10.1002/smll.200901757
10.1002/jbm.10195
10.1073/pnas.94.25.13661
10.1089/ten.2006.0205
10.1002/adfm.200900918
10.1016/j.actbio.2009.10.051
10.1016/j.biomaterials.2009.09.002
10.1529/biophysj.107.105841
10.1002/(SICI)1097-0290(20000205)67:3<344::AID-BIT11>3.0.CO;2-2
10.1002/jbm.a.30232
10.1002/polb.20572
10.1002/hep.22193
10.1002/jbm.a.30489
10.1002/1097-0290(20001220)70:6<606::AID-BIT2>3.0.CO;2-H
10.1002/adma.200305136
10.1002/jbm.a.31498
10.1126/science.1116995
10.1002/app.31396
10.1023/B:JMSC.0000034155.93428.ea
10.1557/PROC-1094-DD06-02
10.1002/adma.200400606
10.1089/ten.tea.2008.0473
10.1002/(SICI)1097-4636(20000605)50:3<428::AID-JBM18>3.0.CO;2-H
10.1002/jbm.a.31242
10.1002/polb.10293
10.1016/j.biomaterials.2009.09.057
10.1089/ten.tea.2008.0111
ContentType Journal Article
Copyright 2010 Acta Materialia Inc.
Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2010 Acta Materialia Inc.
– notice: Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
7QO
P64
DOI 10.1016/j.actbio.2010.10.025
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
Engineering Research Database

MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 1139
ExternalDocumentID 10_1016_j_actbio_2010_10_025
20977951
US201500107853
S1742706110005003
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
ABPIF
FBQ
AAXKI
AFJKZ
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
7QO
P64
ID FETCH-LOGICAL-c450t-9882e2089079e1bef73a206fdb7f5cdad13796f44590385d47d40bf7d33666c03
IEDL.DBID AIKHN
ISSN 1742-7061
IngestDate Fri Oct 25 09:17:45 EDT 2024
Thu Oct 24 23:11:09 EDT 2024
Fri Oct 25 12:16:51 EDT 2024
Thu Sep 26 19:07:03 EDT 2024
Sat Sep 28 07:58:59 EDT 2024
Wed Dec 27 19:28:10 EST 2023
Fri Feb 23 02:35:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Mechanical properties
PCL
Scaffold
Gelatin
Coaxial electrospinning
Language English
License Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-9882e2089079e1bef73a206fdb7f5cdad13796f44590385d47d40bf7d33666c03
Notes http://dx.doi.org/10.1016/j.actbio.2010.10.025
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20977951
PQID 1671310148
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_918068236
proquest_miscellaneous_848685206
proquest_miscellaneous_1671310148
crossref_primary_10_1016_j_actbio_2010_10_025
pubmed_primary_20977951
fao_agris_US201500107853
elsevier_sciencedirect_doi_10_1016_j_actbio_2010_10_025
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wells (b0005) 2008; 47
Bryant, Anseth, Lee, Bader (b0095) 2004; 22
Balguid, Mol, van Marion, Bank, Bouten, Baaijens (b0140) 2009; 15
Zhang, Huang, Xu, Lim, Ramakrishna (b0110) 2004; 16
Powell, Boyce (b0160) 2007; 84A
Salem, Stevens, Pearson, Davies, Tendler, Roberts (b0085) 2002; 61
Jacobs, Anandjiwala, Maaza (b0145) 2010; 115
Lee, Kim, La, Lee, Sung (b0170) 2002; 40
Ma, Li, Yang, Kniss (b0075) 2000; 70
Dikovsky, Bianco-Peled, Seliktar (b0060) 2008; 94
Zhao, Jiang, Pan, Zhu, Chen, Zhao (b0135) 2007; 83A
Discher, Janmey, Wang (b0010) 2005; 310
Deitzel, Kleinmeyer, Harris, Tan (b0155) 2001; 42
Subramanian, Lin (b0055) 2005; 75A
Pelham, Wang (b0015) 1997; 94
Jiang, Hu, Li, Zhao, Zhu, Chen (b0115) 2005; 108
Cortese, Gigli, Riehle (b0020) 2009; 19
Lo, Wang, Dembo, Wang (b0025) 2000; 79
Glicklis, Shapiro, Agabaria, Merchuk, Cohen (b0070) 2000; 67
Wang, Yu, Kaplan, Rutledge (b0130) 2006; 39
Chen, Patra, Warner, Bhowmick (b0150) 2007; 13
Pek, Wan, Ying (b0035) 2010; 31
Powell, Boyce (b0065) 2009; 15
McClary, Ugarova, Grainger (b0090) 2000; 50
Huang, Zhang, Ramakrishna (b0125) 2005; 43
Zaari, Rajagopalan, Kim, Engler, Wong (b0045) 2004; 16
Han, Boyce, Steckl (b0120) 2008; 1094
Koombhongse, Liu, Reneker (b0175) 2001; 39
Levy-Mishali, Zoldan, Levenberg (b0040) 2009; 15
Soliman, Pagliari, Rinaldi, Forte, Fiaccavento, Pagliari (b0180) 2010; 6
Li, Babel, Jenekhe, Xia (b0100) 2004; 16
Leipzig, Shoichet (b0030) 2009; 30
Collins, Ayala, Desai, Russell (b0050) 2010; 6
Wang, Pieper, Peters, vanBlitterswijk, Lamme (b0080) 2005; 74A
Shawon, Sung (b0165) 2004; 39
Sun, Zussman, Yarin, Wendorff, Greiner (b0105) 2003; 15
Jiang (10.1016/j.actbio.2010.10.025_b0115) 2005; 108
Ma (10.1016/j.actbio.2010.10.025_b0075) 2000; 70
Salem (10.1016/j.actbio.2010.10.025_b0085) 2002; 61
Soliman (10.1016/j.actbio.2010.10.025_b0180) 2010; 6
Cortese (10.1016/j.actbio.2010.10.025_b0020) 2009; 19
Zhao (10.1016/j.actbio.2010.10.025_b0135) 2007; 83A
Jacobs (10.1016/j.actbio.2010.10.025_b0145) 2010; 115
Collins (10.1016/j.actbio.2010.10.025_b0050) 2010; 6
Wang (10.1016/j.actbio.2010.10.025_b0080) 2005; 74A
Chen (10.1016/j.actbio.2010.10.025_b0150) 2007; 13
Lo (10.1016/j.actbio.2010.10.025_b0025) 2000; 79
Pelham (10.1016/j.actbio.2010.10.025_b0015) 1997; 94
Li (10.1016/j.actbio.2010.10.025_b0100) 2004; 16
Han (10.1016/j.actbio.2010.10.025_b0120) 2008; 1094
Zaari (10.1016/j.actbio.2010.10.025_b0045) 2004; 16
Deitzel (10.1016/j.actbio.2010.10.025_b0155) 2001; 42
Huang (10.1016/j.actbio.2010.10.025_b0125) 2005; 43
McClary (10.1016/j.actbio.2010.10.025_b0090) 2000; 50
Lee (10.1016/j.actbio.2010.10.025_b0170) 2002; 40
Sun (10.1016/j.actbio.2010.10.025_b0105) 2003; 15
Koombhongse (10.1016/j.actbio.2010.10.025_b0175) 2001; 39
Discher (10.1016/j.actbio.2010.10.025_b0010) 2005; 310
Subramanian (10.1016/j.actbio.2010.10.025_b0055) 2005; 75A
Balguid (10.1016/j.actbio.2010.10.025_b0140) 2009; 15
Shawon (10.1016/j.actbio.2010.10.025_b0165) 2004; 39
Levy-Mishali (10.1016/j.actbio.2010.10.025_b0040) 2009; 15
Leipzig (10.1016/j.actbio.2010.10.025_b0030) 2009; 30
Zhang (10.1016/j.actbio.2010.10.025_b0110) 2004; 16
Powell (10.1016/j.actbio.2010.10.025_b0160) 2007; 84A
Glicklis (10.1016/j.actbio.2010.10.025_b0070) 2000; 67
Pek (10.1016/j.actbio.2010.10.025_b0035) 2010; 31
Dikovsky (10.1016/j.actbio.2010.10.025_b0060) 2008; 94
Powell (10.1016/j.actbio.2010.10.025_b0065) 2009; 15
Bryant (10.1016/j.actbio.2010.10.025_b0095) 2004; 22
Wells (10.1016/j.actbio.2010.10.025_b0005) 2008; 47
Wang (10.1016/j.actbio.2010.10.025_b0130) 2006; 39
References_xml – volume: 15
  start-page: 437
  year: 2009
  end-page: 444
  ident: b0140
  article-title: Tailoring fiber diameter in electrospun polycaprolactone scaffolds for optimal cellular infiltration in cardiovascular tissue engineering
  publication-title: Tissue Eng
  contributor:
    fullname: Baaijens
– volume: 6
  start-page: 1227
  year: 2010
  end-page: 1237
  ident: b0180
  article-title: Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning
  publication-title: Acta Biomater
  contributor:
    fullname: Pagliari
– volume: 31
  start-page: 385
  year: 2010
  end-page: 391
  ident: b0035
  article-title: The effect of matrix stiffness on mesenchymal stem cell differentiation in a three-dimensional thixotropic gel
  publication-title: Biomaterials
  contributor:
    fullname: Ying
– volume: 16
  start-page: 3406
  year: 2004
  end-page: 3409
  ident: b0110
  article-title: Preparation of core-shell structured PCL-r-Gelatin bi-component nanofibers by coaxial electrospinning
  publication-title: Chem Mater
  contributor:
    fullname: Ramakrishna
– volume: 16
  start-page: 2133
  year: 2004
  end-page: 2137
  ident: b0045
  article-title: Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response
  publication-title: Adv Mater
  contributor:
    fullname: Wong
– volume: 22
  start-page: 1143
  year: 2004
  end-page: 1149
  ident: b0095
  article-title: Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain
  publication-title: J Orthopaed Res
  contributor:
    fullname: Bader
– volume: 16
  start-page: 2062
  year: 2004
  ident: b0100
  article-title: Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret
  publication-title: Adv Mater
  contributor:
    fullname: Xia
– volume: 108
  start-page: 230
  year: 2005
  end-page: 243
  ident: b0115
  article-title: A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents
  publication-title: J Control Rel
  contributor:
    fullname: Chen
– volume: 15
  start-page: 935
  year: 2009
  end-page: 944
  ident: b0040
  article-title: Effect of scaffold stiffness on myoblast differentiation
  publication-title: Tissue Eng
  contributor:
    fullname: Levenberg
– volume: 47
  start-page: 1394
  year: 2008
  end-page: 1400
  ident: b0005
  article-title: The role of matrix stiffness in regulating cell behavior
  publication-title: Hepatology
  contributor:
    fullname: Wells
– volume: 75A
  start-page: 742
  year: 2005
  end-page: 753
  ident: b0055
  article-title: Crosslinked chitosan: its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Lin
– volume: 94
  start-page: 2914
  year: 2008
  end-page: 2925
  ident: b0060
  article-title: Defining the role of matrix compliance and proteolysis in three-dimensional cell spreading and remodeling
  publication-title: Biophys J
  contributor:
    fullname: Seliktar
– volume: 39
  start-page: 1102
  year: 2006
  end-page: 1107
  ident: b0130
  article-title: Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning
  publication-title: Macromol
  contributor:
    fullname: Rutledge
– volume: 84A
  start-page: 1078
  year: 2007
  end-page: 1086
  ident: b0160
  article-title: Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Boyce
– volume: 6
  start-page: 355
  year: 2010
  end-page: 360
  ident: b0050
  article-title: Three-dimensional culture with stiff microstructures increases proliferation and slows osteogenic differentiation of human mesenchymal stem cells
  publication-title: Small
  contributor:
    fullname: Russell
– volume: 15
  start-page: 1929
  year: 2003
  end-page: 1932
  ident: b0105
  article-title: Compound core–shell polymer nanofibers by co-electrospinning
  publication-title: Adv Mater
  contributor:
    fullname: Greiner
– volume: 310
  start-page: 1139
  year: 2005
  end-page: 1143
  ident: b0010
  article-title: Tissue cells feel and respond to the stiffness of their substrate
  publication-title: Science
  contributor:
    fullname: Wang
– volume: 39
  start-page: 4605
  year: 2004
  end-page: 4613
  ident: b0165
  article-title: Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF
  publication-title: J Mater Sci
  contributor:
    fullname: Sung
– volume: 94
  start-page: 13661
  year: 1997
  end-page: 13665
  ident: b0015
  article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility
  publication-title: Proc Natl Acad Sci
  contributor:
    fullname: Wang
– volume: 79
  start-page: 144
  year: 2000
  end-page: 152
  ident: b0025
  article-title: Cell movement is guided by the rigidity of the substrate
  publication-title: Biophys J
  contributor:
    fullname: Wang
– volume: 43
  start-page: 2852
  year: 2005
  end-page: 2861
  ident: b0125
  article-title: Double-layered composite nanofibers and their mechanical performance
  publication-title: J Poly Sci B Poly Phys
  contributor:
    fullname: Ramakrishna
– volume: 13
  start-page: 579
  year: 2007
  end-page: 587
  ident: b0150
  article-title: Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds
  publication-title: Tissue Eng
  contributor:
    fullname: Bhowmick
– volume: 30
  start-page: 6867
  year: 2009
  end-page: 6878
  ident: b0030
  article-title: The effect of substrate stiffness on adult neural stem cell behavior
  publication-title: Biomaterials
  contributor:
    fullname: Shoichet
– volume: 67
  start-page: 44
  year: 2000
  ident: b0070
  article-title: Hepatocyte behavior within three-dimensional porous alginate scaffolds
  publication-title: Biotechnol Bioeng
  contributor:
    fullname: Cohen
– volume: 70
  start-page: 606
  year: 2000
  end-page: 618
  ident: b0075
  article-title: Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development
  publication-title: Biotechnol Bioeng
  contributor:
    fullname: Kniss
– volume: 115
  start-page: 3130
  year: 2010
  end-page: 3136
  ident: b0145
  article-title: The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers
  publication-title: J Appl Polym Sci
  contributor:
    fullname: Maaza
– volume: 40
  start-page: 2259
  year: 2002
  end-page: 2268
  ident: b0170
  article-title: Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats
  publication-title: J Polym Sci
  contributor:
    fullname: Sung
– volume: 83A
  start-page: 372
  year: 2007
  end-page: 382
  ident: b0135
  article-title: Biodegradable fibrous scaffolds composed of gelatin coated poly(epsilon-caprolactone) prepared by coaxial electrospinning
  publication-title: J Biomed Mater Res A
  contributor:
    fullname: Zhao
– volume: 15
  start-page: 2177
  year: 2009
  end-page: 2187
  ident: b0065
  article-title: Engineered human skin fabricated using electrospun collagen-PCL blends: morphogenesis and mechanical properties
  publication-title: Tissue Eng
  contributor:
    fullname: Boyce
– volume: 74A
  start-page: 523
  year: 2005
  end-page: 532
  ident: b0080
  article-title: Synthetic scaffold morphology controls human dermal connective tissue formation
  publication-title: J Biomed Mater Res A
  contributor:
    fullname: Lamme
– volume: 50
  start-page: 428
  year: 2000
  end-page: 439
  ident: b0090
  article-title: Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Grainger
– volume: 61
  start-page: 212
  year: 2002
  end-page: 217
  ident: b0085
  article-title: Interaction of 3T3 fibroblasts and endothelial cells with defined pore features
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Roberts
– volume: 19
  start-page: 2961
  year: 2009
  end-page: 2968
  ident: b0020
  article-title: Mechanical gradient cues for guided cell motility and control of cell behavior on uniform substrates
  publication-title: Adv Funct Mater
  contributor:
    fullname: Riehle
– volume: 39
  start-page: 2598
  year: 2001
  end-page: 2606
  ident: b0175
  article-title: Flat polymer ribbons and other shapes by electrospinning
  publication-title: J Polym Sci
  contributor:
    fullname: Reneker
– volume: 1094
  start-page: 1
  year: 2008
  end-page: 6
  ident: b0120
  article-title: Versatile core-sheath biofibers using coaxial electrospinning
  publication-title: Mater Res Soc
  contributor:
    fullname: Steckl
– volume: 42
  start-page: 261
  year: 2001
  end-page: 272
  ident: b0155
  article-title: The effect of processing variables on the morphology of electrospun nanofibers and textiles
  publication-title: Polymer
  contributor:
    fullname: Tan
– volume: 108
  start-page: 230
  year: 2005
  ident: 10.1016/j.actbio.2010.10.025_b0115
  article-title: A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents
  publication-title: J Control Rel
  doi: 10.1016/j.jconrel.2005.08.006
  contributor:
    fullname: Jiang
– volume: 79
  start-page: 144
  year: 2000
  ident: 10.1016/j.actbio.2010.10.025_b0025
  article-title: Cell movement is guided by the rigidity of the substrate
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(00)76279-5
  contributor:
    fullname: Lo
– volume: 39
  start-page: 1102
  year: 2006
  ident: 10.1016/j.actbio.2010.10.025_b0130
  article-title: Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning
  publication-title: Macromol
  doi: 10.1021/ma0517749
  contributor:
    fullname: Wang
– volume: 39
  start-page: 2598
  year: 2001
  ident: 10.1016/j.actbio.2010.10.025_b0175
  article-title: Flat polymer ribbons and other shapes by electrospinning
  publication-title: J Polym Sci
  doi: 10.1002/polb.10015
  contributor:
    fullname: Koombhongse
– volume: 16
  start-page: 2133
  year: 2004
  ident: 10.1016/j.actbio.2010.10.025_b0045
  article-title: Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response
  publication-title: Adv Mater
  doi: 10.1002/adma.200400883
  contributor:
    fullname: Zaari
– volume: 22
  start-page: 1143
  year: 2004
  ident: 10.1016/j.actbio.2010.10.025_b0095
  article-title: Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain
  publication-title: J Orthopaed Res
  doi: 10.1016/j.orthres.2004.02.001
  contributor:
    fullname: Bryant
– volume: 15
  start-page: 437
  year: 2009
  ident: 10.1016/j.actbio.2010.10.025_b0140
  article-title: Tailoring fiber diameter in electrospun polycaprolactone scaffolds for optimal cellular infiltration in cardiovascular tissue engineering
  publication-title: Tissue Eng
  doi: 10.1089/ten.tea.2007.0294
  contributor:
    fullname: Balguid
– volume: 16
  start-page: 3406
  year: 2004
  ident: 10.1016/j.actbio.2010.10.025_b0110
  article-title: Preparation of core-shell structured PCL-r-Gelatin bi-component nanofibers by coaxial electrospinning
  publication-title: Chem Mater
  doi: 10.1021/cm049580f
  contributor:
    fullname: Zhang
– volume: 42
  start-page: 261
  year: 2001
  ident: 10.1016/j.actbio.2010.10.025_b0155
  article-title: The effect of processing variables on the morphology of electrospun nanofibers and textiles
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00250-0
  contributor:
    fullname: Deitzel
– volume: 6
  start-page: 355
  year: 2010
  ident: 10.1016/j.actbio.2010.10.025_b0050
  article-title: Three-dimensional culture with stiff microstructures increases proliferation and slows osteogenic differentiation of human mesenchymal stem cells
  publication-title: Small
  doi: 10.1002/smll.200901757
  contributor:
    fullname: Collins
– volume: 61
  start-page: 212
  year: 2002
  ident: 10.1016/j.actbio.2010.10.025_b0085
  article-title: Interaction of 3T3 fibroblasts and endothelial cells with defined pore features
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.10195
  contributor:
    fullname: Salem
– volume: 94
  start-page: 13661
  year: 1997
  ident: 10.1016/j.actbio.2010.10.025_b0015
  article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.94.25.13661
  contributor:
    fullname: Pelham
– volume: 13
  start-page: 579
  year: 2007
  ident: 10.1016/j.actbio.2010.10.025_b0150
  article-title: Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds
  publication-title: Tissue Eng
  doi: 10.1089/ten.2006.0205
  contributor:
    fullname: Chen
– volume: 19
  start-page: 2961
  year: 2009
  ident: 10.1016/j.actbio.2010.10.025_b0020
  article-title: Mechanical gradient cues for guided cell motility and control of cell behavior on uniform substrates
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200900918
  contributor:
    fullname: Cortese
– volume: 6
  start-page: 1227
  year: 2010
  ident: 10.1016/j.actbio.2010.10.025_b0180
  article-title: Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2009.10.051
  contributor:
    fullname: Soliman
– volume: 30
  start-page: 6867
  year: 2009
  ident: 10.1016/j.actbio.2010.10.025_b0030
  article-title: The effect of substrate stiffness on adult neural stem cell behavior
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.09.002
  contributor:
    fullname: Leipzig
– volume: 94
  start-page: 2914
  year: 2008
  ident: 10.1016/j.actbio.2010.10.025_b0060
  article-title: Defining the role of matrix compliance and proteolysis in three-dimensional cell spreading and remodeling
  publication-title: Biophys J
  doi: 10.1529/biophysj.107.105841
  contributor:
    fullname: Dikovsky
– volume: 67
  start-page: 44
  year: 2000
  ident: 10.1016/j.actbio.2010.10.025_b0070
  article-title: Hepatocyte behavior within three-dimensional porous alginate scaffolds
  publication-title: Biotechnol Bioeng
  doi: 10.1002/(SICI)1097-0290(20000205)67:3<344::AID-BIT11>3.0.CO;2-2
  contributor:
    fullname: Glicklis
– volume: 74A
  start-page: 523
  year: 2005
  ident: 10.1016/j.actbio.2010.10.025_b0080
  article-title: Synthetic scaffold morphology controls human dermal connective tissue formation
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.30232
  contributor:
    fullname: Wang
– volume: 43
  start-page: 2852
  year: 2005
  ident: 10.1016/j.actbio.2010.10.025_b0125
  article-title: Double-layered composite nanofibers and their mechanical performance
  publication-title: J Poly Sci B Poly Phys
  doi: 10.1002/polb.20572
  contributor:
    fullname: Huang
– volume: 47
  start-page: 1394
  year: 2008
  ident: 10.1016/j.actbio.2010.10.025_b0005
  article-title: The role of matrix stiffness in regulating cell behavior
  publication-title: Hepatology
  doi: 10.1002/hep.22193
  contributor:
    fullname: Wells
– volume: 75A
  start-page: 742
  year: 2005
  ident: 10.1016/j.actbio.2010.10.025_b0055
  article-title: Crosslinked chitosan: its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.a.30489
  contributor:
    fullname: Subramanian
– volume: 70
  start-page: 606
  year: 2000
  ident: 10.1016/j.actbio.2010.10.025_b0075
  article-title: Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development
  publication-title: Biotechnol Bioeng
  doi: 10.1002/1097-0290(20001220)70:6<606::AID-BIT2>3.0.CO;2-H
  contributor:
    fullname: Ma
– volume: 15
  start-page: 1929
  year: 2003
  ident: 10.1016/j.actbio.2010.10.025_b0105
  article-title: Compound core–shell polymer nanofibers by co-electrospinning
  publication-title: Adv Mater
  doi: 10.1002/adma.200305136
  contributor:
    fullname: Sun
– volume: 84A
  start-page: 1078
  year: 2007
  ident: 10.1016/j.actbio.2010.10.025_b0160
  article-title: Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.a.31498
  contributor:
    fullname: Powell
– volume: 310
  start-page: 1139
  year: 2005
  ident: 10.1016/j.actbio.2010.10.025_b0010
  article-title: Tissue cells feel and respond to the stiffness of their substrate
  publication-title: Science
  doi: 10.1126/science.1116995
  contributor:
    fullname: Discher
– volume: 115
  start-page: 3130
  year: 2010
  ident: 10.1016/j.actbio.2010.10.025_b0145
  article-title: The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.31396
  contributor:
    fullname: Jacobs
– volume: 39
  start-page: 4605
  year: 2004
  ident: 10.1016/j.actbio.2010.10.025_b0165
  article-title: Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF
  publication-title: J Mater Sci
  doi: 10.1023/B:JMSC.0000034155.93428.ea
  contributor:
    fullname: Shawon
– volume: 1094
  start-page: 1
  year: 2008
  ident: 10.1016/j.actbio.2010.10.025_b0120
  article-title: Versatile core-sheath biofibers using coaxial electrospinning
  publication-title: Mater Res Soc
  doi: 10.1557/PROC-1094-DD06-02
  contributor:
    fullname: Han
– volume: 16
  start-page: 2062
  year: 2004
  ident: 10.1016/j.actbio.2010.10.025_b0100
  article-title: Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret
  publication-title: Adv Mater
  doi: 10.1002/adma.200400606
  contributor:
    fullname: Li
– volume: 15
  start-page: 2177
  year: 2009
  ident: 10.1016/j.actbio.2010.10.025_b0065
  article-title: Engineered human skin fabricated using electrospun collagen-PCL blends: morphogenesis and mechanical properties
  publication-title: Tissue Eng
  doi: 10.1089/ten.tea.2008.0473
  contributor:
    fullname: Powell
– volume: 50
  start-page: 428
  year: 2000
  ident: 10.1016/j.actbio.2010.10.025_b0090
  article-title: Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold
  publication-title: J Biomed Mater Res
  doi: 10.1002/(SICI)1097-4636(20000605)50:3<428::AID-JBM18>3.0.CO;2-H
  contributor:
    fullname: McClary
– volume: 83A
  start-page: 372
  year: 2007
  ident: 10.1016/j.actbio.2010.10.025_b0135
  article-title: Biodegradable fibrous scaffolds composed of gelatin coated poly(epsilon-caprolactone) prepared by coaxial electrospinning
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.31242
  contributor:
    fullname: Zhao
– volume: 40
  start-page: 2259
  year: 2002
  ident: 10.1016/j.actbio.2010.10.025_b0170
  article-title: Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats
  publication-title: J Polym Sci
  doi: 10.1002/polb.10293
  contributor:
    fullname: Lee
– volume: 31
  start-page: 385
  year: 2010
  ident: 10.1016/j.actbio.2010.10.025_b0035
  article-title: The effect of matrix stiffness on mesenchymal stem cell differentiation in a three-dimensional thixotropic gel
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.09.057
  contributor:
    fullname: Pek
– volume: 15
  start-page: 935
  year: 2009
  ident: 10.1016/j.actbio.2010.10.025_b0040
  article-title: Effect of scaffold stiffness on myoblast differentiation
  publication-title: Tissue Eng
  doi: 10.1089/ten.tea.2008.0111
  contributor:
    fullname: Levy-Mishali
SSID ssj0038128
Score 2.2256532
Snippet Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking,...
SourceID proquest
crossref
pubmed
fao
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1133
SubjectTerms bioactive properties
Biocompatible Materials
Cellular
coatings
Coaxial electrospinning
Correlation
crosslinking
Density
Electrospinning
Feed rate
Fibers
Gelatin
Mechanical properties
Microscopy, Confocal
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
PCL
phenotype
Polyesters - chemistry
polymers
Scaffold
Scaffolds
solvents
Stiffness
Tensile Strength
Tissue Engineering
viability
Title Regulation of electrospun scaffold stiffness via coaxial core diameter
URI https://dx.doi.org/10.1016/j.actbio.2010.10.025
https://www.ncbi.nlm.nih.gov/pubmed/20977951
https://search.proquest.com/docview/1671310148
https://search.proquest.com/docview/848685206
https://search.proquest.com/docview/918068236
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wscUKFAQ0tlJK5h7cSJnWNVdbWA6IGyUm-WHdtoUUlW7C7ixG9nJh-olbpC4urYUvxszzzb43kAb0PuRG1J30V6ncqgqxRpBE9VWfgy8KwqIp1Dfroq5wv54aa42YOL8S0MhVUOtr-36Z21HkqmA5rT1XI5vUYunSl0R6JLYkIZPw_QHWV6Agfn7z_Or0aDjD6pk1il-ik1GF_QdWFett64ZdvHeFGYF2lmP-yh9qNtd_PQzh_NDuHJQCTZef-vT2EvNM_g8Z30gkcw-9wLzSP0rI1sULxZr7YNW9c2xvbWM1zhMZK5Yz-XltWt_YUTklFuS4Yz5zsFyzyHxezyy8U8HXQT0loWfJNWyJpDxjXue6sgXIgqtxkvo3cqFrW3XuSqKqOURUX3gl4qL7mLyuc5bmZqnr-ASdM24RhYtFLWyJm84-jGcuEihUpJZ0NRRS9EAumIlVn16THMGDf2zfTYGsKWShHbBNQIqLk3zAYt-D9aHiP-xn5F22cW1xmd1OBXhXQjgTfjoBhcHHTjYZvQbtdGlLgHJzVinQDbUUdLXeoC8dldpRKal6QMn8DLfsz_djbjSKCRpb76746dwKP-nJri2k5hsvmxDa-R6GzcGey_-y3Ohun8B9eo-NQ
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9wgEB6lyaHtIUqfcfqiUq_Wgo2NOUZRV5sm2UOTlXJDYKDaqLVX3d2qP78zflSt1FWkXjFI5gNmPmCYD-BDyJ2oLem7SF-lMlQ6RRrBU1UWvgw800Wkc8ireTlbyE-3xe0enI1vYSiscrD9vU3vrPVQMhnQnKyWy8k1culMoTsSXRITyvh5gGxA4-o8OD2_mM1Hg4w-qZNYpfopNRhf0HVhXrbeuGXbx3hRmBdpZv_bQz2Itt3NQzt_ND2Cw4FIstP-X5_AXmiewuM_0gs-g-nnXmgeoWdtZIPizXq1bdi6tjG2Xz3DFR4jmTv2Y2lZ3dqfOCEZ5bZkOHO-UbDMc1hMP96czdJBNyGtZcE3qUbWHDJe4b5XB-FCVLnNeBm9U7GovfUiV7qMUhaa7gW9VF5yF5XPc9zM1Dx_AftN24RjYNFKWSNn8o6jG8uFixQqJZ0NhY5eiATSESuz6tNjmDFu7M702BrClkoR2wTUCKj5a5gNWvB7Wh4j_sZ-QdtnFtcZndTgV4V0I4H346AYXBx042Gb0G7XRpS4Byc14ioBtqNOJauyKhCf3VW0qHhJyvAJvOzH_HdnM44EGlnqyX937B08nN1cXZrL8_nFK3jUn1lTjNtr2N9834Y3SHo27u0wqX8B3Tn6yA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+electrospun+scaffold+stiffness+via+coaxial+core+diameter&rft.jtitle=Acta+biomaterialia&rft.au=Drexler%2C+J+W&rft.au=Powell%2C+H+M&rft.date=2011-03-01&rft.eissn=1878-7568&rft.volume=7&rft.issue=3&rft.spage=1133&rft.epage=1139&rft_id=info:doi/10.1016%2Fj.actbio.2010.10.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon