Regulation of electrospun scaffold stiffness via coaxial core diameter
Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate s...
Saved in:
Published in | Acta biomaterialia Vol. 7; no. 3; pp. 1133 - 1139 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.03.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate stiffness; however, they are not ideal as the processing can change substrate morphology, density or chemistry. Coaxial electrospinning was investigated as a fabrication method to produce scaffolds with tunable stiffness and strength without changing architecture or surface chemistry. Core solution concentration, solvent and feed rate were utilized to control core diameter with higher solution concentration and feed rate positively correlating with increased fiber diameter and stiffness. Coaxial scaffolds electrospun with an 8wt./vol.% polycaprolactone (PCL)-HFP solution at 1mlh–1 formed scaffolds with an average core diameter of 1.1±0.2μm and stiffness of 0.027±3.3×10–3Nmm–1. In contrast, fibers which were 2.6±0.1μm in core diameter yielded scaffolds with a stiffness of 0.065±4.7×10–3Nmm–1. Strength and stiffness positively correlated with core diameter with no significant difference in total fiber diameter and interfiber distance observed in as-spun scaffolds. These data indicate that coaxial core diameter can be utilized to tailor mechanical properties of three-dimensional scaffolds and would provide an ideal scaffold for assessing the effect of scaffold mechanics on cell behavior. |
---|---|
AbstractList | Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate stiffness; however, they are not ideal as the processing can change substrate morphology, density or chemistry. Coaxial electrospinning was investigated as a fabrication method to produce scaffolds with tunable stiffness and strength without changing architecture or surface chemistry. Core solution concentration, solvent and feed rate were utilized to control core diameter with higher solution concentration and feed rate positively correlating with increased fiber diameter and stiffness. Coaxial scaffolds electrospun with an 8 wt./vol.% polycaprolactone (PCL)-HFP solution at 1 ml h(-1) formed scaffolds with an average core diameter of 1.1±0.2 μm and stiffness of 0.027±3.3×10(-3) N mm(-1). In contrast, fibers which were 2.6±0.1 μm in core diameter yielded scaffolds with a stiffness of 0.065±4.7×10(-3) N mm(-1). Strength and stiffness positively correlated with core diameter with no significant difference in total fiber diameter and interfiber distance observed in as-spun scaffolds. These data indicate that coaxial core diameter can be utilized to tailor mechanical properties of three-dimensional scaffolds and would provide an ideal scaffold for assessing the effect of scaffold mechanics on cell behavior. Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate stiffness; however, they are not ideal as the processing can change substrate morphology, density or chemistry. Coaxial electrospinning was investigated as a fabrication method to produce scaffolds with tunable stiffness and strength without changing architecture or surface chemistry. Core solution concentration, solvent and feed rate were utilized to control core diameter with higher solution concentration and feed rate positively correlating with increased fiber diameter and stiffness. Coaxial scaffolds electrospun with an 8 wt./vol.% polycaprolactone (PCL)-HFP solution at 1 ml h-1 formed scaffolds with an average core diameter of 1.1 +/- 0.2 mu m and stiffness of 0.027 +/- 3.3 x 10-3 N mm-1. In contrast, fibers which were 2.6 +/- 0.1 mu m in core diameter yielded scaffolds with a stiffness of 0.065 +/- 4.7 x 10-3 N mm-1. Strength and stiffness positively correlated with core diameter with no significant difference in total fiber diameter and interfiber distance observed in as-spun scaffolds. These data indicate that coaxial core diameter can be utilized to tailor mechanical properties of three-dimensional scaffolds and would provide an ideal scaffold for assessing the effect of scaffold mechanics on cell behavior. Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate stiffness; however, they are not ideal as the processing can change substrate morphology, density or chemistry. Coaxial electrospinning was investigated as a fabrication method to produce scaffolds with tunable stiffness and strength without changing architecture or surface chemistry. Core solution concentration, solvent and feed rate were utilized to control core diameter with higher solution concentration and feed rate positively correlating with increased fiber diameter and stiffness. Coaxial scaffolds electrospun with an 8wt./vol.% polycaprolactone (PCL)-HFP solution at 1mlh–¹ formed scaffolds with an average core diameter of 1.1±0.2μm and stiffness of 0.027±3.3×10–³Nmm–¹. In contrast, fibers which were 2.6±0.1μm in core diameter yielded scaffolds with a stiffness of 0.065±4.7×10–³Nmm–¹. Strength and stiffness positively correlated with core diameter with no significant difference in total fiber diameter and interfiber distance observed in as-spun scaffolds. These data indicate that coaxial core diameter can be utilized to tailor mechanical properties of three-dimensional scaffolds and would provide an ideal scaffold for assessing the effect of scaffold mechanics on cell behavior. Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate stiffness; however, they are not ideal as the processing can change substrate morphology, density or chemistry. Coaxial electrospinning was investigated as a fabrication method to produce scaffolds with tunable stiffness and strength without changing architecture or surface chemistry. Core solution concentration, solvent and feed rate were utilized to control core diameter with higher solution concentration and feed rate positively correlating with increased fiber diameter and stiffness. Coaxial scaffolds electrospun with an 8wt./vol.% polycaprolactone (PCL)-HFP solution at 1mlh–1 formed scaffolds with an average core diameter of 1.1±0.2μm and stiffness of 0.027±3.3×10–3Nmm–1. In contrast, fibers which were 2.6±0.1μm in core diameter yielded scaffolds with a stiffness of 0.065±4.7×10–3Nmm–1. Strength and stiffness positively correlated with core diameter with no significant difference in total fiber diameter and interfiber distance observed in as-spun scaffolds. These data indicate that coaxial core diameter can be utilized to tailor mechanical properties of three-dimensional scaffolds and would provide an ideal scaffold for assessing the effect of scaffold mechanics on cell behavior. |
Author | Drexler, J.W. Powell, H.M. |
Author_xml | – sequence: 1 givenname: J.W. surname: Drexler fullname: Drexler, J.W. organization: Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA – sequence: 2 givenname: H.M. surname: Powell fullname: Powell, H.M. email: powell.299@osu.edu, powellh@matsceng.ohio-state.edu organization: Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20977951$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1LHTEQhkNR6kf7D4runb3Z03wneyOIaBUEoa3XIZtMJIc9m2OyK-2_N6dre6lXMwzPvDO87xHaG9MICH0heEUwkd_WK-umPqYVxX9HK0zFB3RItNKtElLv1V5x2iosyQE6KmWNMdOE6o_ogOJOqU6QQ3T9Ax7nwU4xjU0KDQzgppzKdh6b4mwIafBNmWIII5TSPEfbuGR_RzvUmqHx0W5ggvwJ7Qc7FPj8Wo_Rw_XVr8ub9u7---3lxV3ruMBT22lNgWLdYdUB6SEoZimWwfcqCOetJ0x1MnAuuvqr8Fx5jvugPGNSSofZMTpbdLc5Pc1QJrOJxcEw2BHSXExHNJaaMvkuqbmWWtTjlfz6JkmkIqxaznVF-YK66lHJEMw2x43NfwzBZpeKWZslFbNLZTetqdS1k9cLc78B_3_pXwwVOF2AYJOxjzkW8_CzKghcVZQWrBLnCwHV3ecI2RQXYXTgY66RGZ_i2z-8AIQnqTc |
CitedBy_id | crossref_primary_10_1021_bm301101r crossref_primary_10_1016_j_actbio_2019_11_051 crossref_primary_10_1016_j_porgcoat_2020_105858 crossref_primary_10_3389_fbioe_2020_567842 crossref_primary_10_1016_j_actbio_2018_09_014 crossref_primary_10_1021_acsami_9b00293 crossref_primary_10_1016_j_jmbbm_2015_12_034 crossref_primary_10_1002_ceat_201400323 crossref_primary_10_1016_j_msec_2020_111354 crossref_primary_10_3390_ma11071116 crossref_primary_10_1002_marc_201200648 crossref_primary_10_1039_D1BM00503K crossref_primary_10_1177_1849543518803538 crossref_primary_10_1016_j_colsurfb_2024_113864 crossref_primary_10_1016_j_carbpol_2011_10_054 crossref_primary_10_1089_ten_tea_2013_0687 crossref_primary_10_1016_j_apsusc_2015_02_037 crossref_primary_10_1021_am405101k crossref_primary_10_1016_j_bioactmat_2021_12_005 crossref_primary_10_1002_app_41982 crossref_primary_10_1002_bip_22120 crossref_primary_10_1016_j_jcis_2016_11_062 crossref_primary_10_1002_pen_23426 crossref_primary_10_1016_j_reprotox_2022_07_003 crossref_primary_10_1016_j_matbio_2019_11_005 crossref_primary_10_1177_0885328217749962 crossref_primary_10_1016_j_actbio_2019_09_029 crossref_primary_10_1089_ten_tea_2020_0090 crossref_primary_10_1002_adv_21475 crossref_primary_10_1002_app_42571 crossref_primary_10_1007_s42765_023_00281_9 crossref_primary_10_1002_pat_3408 crossref_primary_10_1016_j_actbio_2016_12_034 crossref_primary_10_1177_09544089211024065 crossref_primary_10_1016_j_matlet_2015_02_120 crossref_primary_10_1089_ten_tea_2012_0338 crossref_primary_10_1021_acsami_9b08341 crossref_primary_10_3390_gels2010012 |
Cites_doi | 10.1016/j.jconrel.2005.08.006 10.1016/S0006-3495(00)76279-5 10.1021/ma0517749 10.1002/polb.10015 10.1002/adma.200400883 10.1016/j.orthres.2004.02.001 10.1089/ten.tea.2007.0294 10.1021/cm049580f 10.1016/S0032-3861(00)00250-0 10.1002/smll.200901757 10.1002/jbm.10195 10.1073/pnas.94.25.13661 10.1089/ten.2006.0205 10.1002/adfm.200900918 10.1016/j.actbio.2009.10.051 10.1016/j.biomaterials.2009.09.002 10.1529/biophysj.107.105841 10.1002/(SICI)1097-0290(20000205)67:3<344::AID-BIT11>3.0.CO;2-2 10.1002/jbm.a.30232 10.1002/polb.20572 10.1002/hep.22193 10.1002/jbm.a.30489 10.1002/1097-0290(20001220)70:6<606::AID-BIT2>3.0.CO;2-H 10.1002/adma.200305136 10.1002/jbm.a.31498 10.1126/science.1116995 10.1002/app.31396 10.1023/B:JMSC.0000034155.93428.ea 10.1557/PROC-1094-DD06-02 10.1002/adma.200400606 10.1089/ten.tea.2008.0473 10.1002/(SICI)1097-4636(20000605)50:3<428::AID-JBM18>3.0.CO;2-H 10.1002/jbm.a.31242 10.1002/polb.10293 10.1016/j.biomaterials.2009.09.057 10.1089/ten.tea.2008.0111 |
ContentType | Journal Article |
Copyright | 2010 Acta Materialia Inc. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2010 Acta Materialia Inc. – notice: Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 7QO P64 |
DOI | 10.1016/j.actbio.2010.10.025 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-7568 |
EndPage | 1139 |
ExternalDocumentID | 10_1016_j_actbio_2010_10_025 20977951 US201500107853 S1742706110005003 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACPRK ACRLP ADBBV ADEWK ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSM SSU SSZ T5K ~G- ABPIF FBQ AAXKI AFJKZ AKRWK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 7QO P64 |
ID | FETCH-LOGICAL-c450t-9882e2089079e1bef73a206fdb7f5cdad13796f44590385d47d40bf7d33666c03 |
IEDL.DBID | AIKHN |
ISSN | 1742-7061 |
IngestDate | Fri Oct 25 09:17:45 EDT 2024 Thu Oct 24 23:11:09 EDT 2024 Fri Oct 25 12:16:51 EDT 2024 Thu Sep 26 19:07:03 EDT 2024 Sat Sep 28 07:58:59 EDT 2024 Wed Dec 27 19:28:10 EST 2023 Fri Feb 23 02:35:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Mechanical properties PCL Scaffold Gelatin Coaxial electrospinning |
Language | English |
License | Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-9882e2089079e1bef73a206fdb7f5cdad13796f44590385d47d40bf7d33666c03 |
Notes | http://dx.doi.org/10.1016/j.actbio.2010.10.025 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20977951 |
PQID | 1671310148 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_918068236 proquest_miscellaneous_848685206 proquest_miscellaneous_1671310148 crossref_primary_10_1016_j_actbio_2010_10_025 pubmed_primary_20977951 fao_agris_US201500107853 elsevier_sciencedirect_doi_10_1016_j_actbio_2010_10_025 |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Acta biomaterialia |
PublicationTitleAlternate | Acta Biomater |
PublicationYear | 2011 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wells (b0005) 2008; 47 Bryant, Anseth, Lee, Bader (b0095) 2004; 22 Balguid, Mol, van Marion, Bank, Bouten, Baaijens (b0140) 2009; 15 Zhang, Huang, Xu, Lim, Ramakrishna (b0110) 2004; 16 Powell, Boyce (b0160) 2007; 84A Salem, Stevens, Pearson, Davies, Tendler, Roberts (b0085) 2002; 61 Jacobs, Anandjiwala, Maaza (b0145) 2010; 115 Lee, Kim, La, Lee, Sung (b0170) 2002; 40 Ma, Li, Yang, Kniss (b0075) 2000; 70 Dikovsky, Bianco-Peled, Seliktar (b0060) 2008; 94 Zhao, Jiang, Pan, Zhu, Chen, Zhao (b0135) 2007; 83A Discher, Janmey, Wang (b0010) 2005; 310 Deitzel, Kleinmeyer, Harris, Tan (b0155) 2001; 42 Subramanian, Lin (b0055) 2005; 75A Pelham, Wang (b0015) 1997; 94 Jiang, Hu, Li, Zhao, Zhu, Chen (b0115) 2005; 108 Cortese, Gigli, Riehle (b0020) 2009; 19 Lo, Wang, Dembo, Wang (b0025) 2000; 79 Glicklis, Shapiro, Agabaria, Merchuk, Cohen (b0070) 2000; 67 Wang, Yu, Kaplan, Rutledge (b0130) 2006; 39 Chen, Patra, Warner, Bhowmick (b0150) 2007; 13 Pek, Wan, Ying (b0035) 2010; 31 Powell, Boyce (b0065) 2009; 15 McClary, Ugarova, Grainger (b0090) 2000; 50 Huang, Zhang, Ramakrishna (b0125) 2005; 43 Zaari, Rajagopalan, Kim, Engler, Wong (b0045) 2004; 16 Han, Boyce, Steckl (b0120) 2008; 1094 Koombhongse, Liu, Reneker (b0175) 2001; 39 Levy-Mishali, Zoldan, Levenberg (b0040) 2009; 15 Soliman, Pagliari, Rinaldi, Forte, Fiaccavento, Pagliari (b0180) 2010; 6 Li, Babel, Jenekhe, Xia (b0100) 2004; 16 Leipzig, Shoichet (b0030) 2009; 30 Collins, Ayala, Desai, Russell (b0050) 2010; 6 Wang, Pieper, Peters, vanBlitterswijk, Lamme (b0080) 2005; 74A Shawon, Sung (b0165) 2004; 39 Sun, Zussman, Yarin, Wendorff, Greiner (b0105) 2003; 15 Jiang (10.1016/j.actbio.2010.10.025_b0115) 2005; 108 Ma (10.1016/j.actbio.2010.10.025_b0075) 2000; 70 Salem (10.1016/j.actbio.2010.10.025_b0085) 2002; 61 Soliman (10.1016/j.actbio.2010.10.025_b0180) 2010; 6 Cortese (10.1016/j.actbio.2010.10.025_b0020) 2009; 19 Zhao (10.1016/j.actbio.2010.10.025_b0135) 2007; 83A Jacobs (10.1016/j.actbio.2010.10.025_b0145) 2010; 115 Collins (10.1016/j.actbio.2010.10.025_b0050) 2010; 6 Wang (10.1016/j.actbio.2010.10.025_b0080) 2005; 74A Chen (10.1016/j.actbio.2010.10.025_b0150) 2007; 13 Lo (10.1016/j.actbio.2010.10.025_b0025) 2000; 79 Pelham (10.1016/j.actbio.2010.10.025_b0015) 1997; 94 Li (10.1016/j.actbio.2010.10.025_b0100) 2004; 16 Han (10.1016/j.actbio.2010.10.025_b0120) 2008; 1094 Zaari (10.1016/j.actbio.2010.10.025_b0045) 2004; 16 Deitzel (10.1016/j.actbio.2010.10.025_b0155) 2001; 42 Huang (10.1016/j.actbio.2010.10.025_b0125) 2005; 43 McClary (10.1016/j.actbio.2010.10.025_b0090) 2000; 50 Lee (10.1016/j.actbio.2010.10.025_b0170) 2002; 40 Sun (10.1016/j.actbio.2010.10.025_b0105) 2003; 15 Koombhongse (10.1016/j.actbio.2010.10.025_b0175) 2001; 39 Discher (10.1016/j.actbio.2010.10.025_b0010) 2005; 310 Subramanian (10.1016/j.actbio.2010.10.025_b0055) 2005; 75A Balguid (10.1016/j.actbio.2010.10.025_b0140) 2009; 15 Shawon (10.1016/j.actbio.2010.10.025_b0165) 2004; 39 Levy-Mishali (10.1016/j.actbio.2010.10.025_b0040) 2009; 15 Leipzig (10.1016/j.actbio.2010.10.025_b0030) 2009; 30 Zhang (10.1016/j.actbio.2010.10.025_b0110) 2004; 16 Powell (10.1016/j.actbio.2010.10.025_b0160) 2007; 84A Glicklis (10.1016/j.actbio.2010.10.025_b0070) 2000; 67 Pek (10.1016/j.actbio.2010.10.025_b0035) 2010; 31 Dikovsky (10.1016/j.actbio.2010.10.025_b0060) 2008; 94 Powell (10.1016/j.actbio.2010.10.025_b0065) 2009; 15 Bryant (10.1016/j.actbio.2010.10.025_b0095) 2004; 22 Wells (10.1016/j.actbio.2010.10.025_b0005) 2008; 47 Wang (10.1016/j.actbio.2010.10.025_b0130) 2006; 39 |
References_xml | – volume: 15 start-page: 437 year: 2009 end-page: 444 ident: b0140 article-title: Tailoring fiber diameter in electrospun polycaprolactone scaffolds for optimal cellular infiltration in cardiovascular tissue engineering publication-title: Tissue Eng contributor: fullname: Baaijens – volume: 6 start-page: 1227 year: 2010 end-page: 1237 ident: b0180 article-title: Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning publication-title: Acta Biomater contributor: fullname: Pagliari – volume: 31 start-page: 385 year: 2010 end-page: 391 ident: b0035 article-title: The effect of matrix stiffness on mesenchymal stem cell differentiation in a three-dimensional thixotropic gel publication-title: Biomaterials contributor: fullname: Ying – volume: 16 start-page: 3406 year: 2004 end-page: 3409 ident: b0110 article-title: Preparation of core-shell structured PCL-r-Gelatin bi-component nanofibers by coaxial electrospinning publication-title: Chem Mater contributor: fullname: Ramakrishna – volume: 16 start-page: 2133 year: 2004 end-page: 2137 ident: b0045 article-title: Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response publication-title: Adv Mater contributor: fullname: Wong – volume: 22 start-page: 1143 year: 2004 end-page: 1149 ident: b0095 article-title: Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain publication-title: J Orthopaed Res contributor: fullname: Bader – volume: 16 start-page: 2062 year: 2004 ident: b0100 article-title: Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret publication-title: Adv Mater contributor: fullname: Xia – volume: 108 start-page: 230 year: 2005 end-page: 243 ident: b0115 article-title: A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents publication-title: J Control Rel contributor: fullname: Chen – volume: 15 start-page: 935 year: 2009 end-page: 944 ident: b0040 article-title: Effect of scaffold stiffness on myoblast differentiation publication-title: Tissue Eng contributor: fullname: Levenberg – volume: 47 start-page: 1394 year: 2008 end-page: 1400 ident: b0005 article-title: The role of matrix stiffness in regulating cell behavior publication-title: Hepatology contributor: fullname: Wells – volume: 75A start-page: 742 year: 2005 end-page: 753 ident: b0055 article-title: Crosslinked chitosan: its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation publication-title: J Biomed Mater Res contributor: fullname: Lin – volume: 94 start-page: 2914 year: 2008 end-page: 2925 ident: b0060 article-title: Defining the role of matrix compliance and proteolysis in three-dimensional cell spreading and remodeling publication-title: Biophys J contributor: fullname: Seliktar – volume: 39 start-page: 1102 year: 2006 end-page: 1107 ident: b0130 article-title: Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning publication-title: Macromol contributor: fullname: Rutledge – volume: 84A start-page: 1078 year: 2007 end-page: 1086 ident: b0160 article-title: Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes publication-title: J Biomed Mater Res contributor: fullname: Boyce – volume: 6 start-page: 355 year: 2010 end-page: 360 ident: b0050 article-title: Three-dimensional culture with stiff microstructures increases proliferation and slows osteogenic differentiation of human mesenchymal stem cells publication-title: Small contributor: fullname: Russell – volume: 15 start-page: 1929 year: 2003 end-page: 1932 ident: b0105 article-title: Compound core–shell polymer nanofibers by co-electrospinning publication-title: Adv Mater contributor: fullname: Greiner – volume: 310 start-page: 1139 year: 2005 end-page: 1143 ident: b0010 article-title: Tissue cells feel and respond to the stiffness of their substrate publication-title: Science contributor: fullname: Wang – volume: 39 start-page: 4605 year: 2004 end-page: 4613 ident: b0165 article-title: Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF publication-title: J Mater Sci contributor: fullname: Sung – volume: 94 start-page: 13661 year: 1997 end-page: 13665 ident: b0015 article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility publication-title: Proc Natl Acad Sci contributor: fullname: Wang – volume: 79 start-page: 144 year: 2000 end-page: 152 ident: b0025 article-title: Cell movement is guided by the rigidity of the substrate publication-title: Biophys J contributor: fullname: Wang – volume: 43 start-page: 2852 year: 2005 end-page: 2861 ident: b0125 article-title: Double-layered composite nanofibers and their mechanical performance publication-title: J Poly Sci B Poly Phys contributor: fullname: Ramakrishna – volume: 13 start-page: 579 year: 2007 end-page: 587 ident: b0150 article-title: Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds publication-title: Tissue Eng contributor: fullname: Bhowmick – volume: 30 start-page: 6867 year: 2009 end-page: 6878 ident: b0030 article-title: The effect of substrate stiffness on adult neural stem cell behavior publication-title: Biomaterials contributor: fullname: Shoichet – volume: 67 start-page: 44 year: 2000 ident: b0070 article-title: Hepatocyte behavior within three-dimensional porous alginate scaffolds publication-title: Biotechnol Bioeng contributor: fullname: Cohen – volume: 70 start-page: 606 year: 2000 end-page: 618 ident: b0075 article-title: Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development publication-title: Biotechnol Bioeng contributor: fullname: Kniss – volume: 115 start-page: 3130 year: 2010 end-page: 3136 ident: b0145 article-title: The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers publication-title: J Appl Polym Sci contributor: fullname: Maaza – volume: 40 start-page: 2259 year: 2002 end-page: 2268 ident: b0170 article-title: Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats publication-title: J Polym Sci contributor: fullname: Sung – volume: 83A start-page: 372 year: 2007 end-page: 382 ident: b0135 article-title: Biodegradable fibrous scaffolds composed of gelatin coated poly(epsilon-caprolactone) prepared by coaxial electrospinning publication-title: J Biomed Mater Res A contributor: fullname: Zhao – volume: 15 start-page: 2177 year: 2009 end-page: 2187 ident: b0065 article-title: Engineered human skin fabricated using electrospun collagen-PCL blends: morphogenesis and mechanical properties publication-title: Tissue Eng contributor: fullname: Boyce – volume: 74A start-page: 523 year: 2005 end-page: 532 ident: b0080 article-title: Synthetic scaffold morphology controls human dermal connective tissue formation publication-title: J Biomed Mater Res A contributor: fullname: Lamme – volume: 50 start-page: 428 year: 2000 end-page: 439 ident: b0090 article-title: Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold publication-title: J Biomed Mater Res contributor: fullname: Grainger – volume: 61 start-page: 212 year: 2002 end-page: 217 ident: b0085 article-title: Interaction of 3T3 fibroblasts and endothelial cells with defined pore features publication-title: J Biomed Mater Res contributor: fullname: Roberts – volume: 19 start-page: 2961 year: 2009 end-page: 2968 ident: b0020 article-title: Mechanical gradient cues for guided cell motility and control of cell behavior on uniform substrates publication-title: Adv Funct Mater contributor: fullname: Riehle – volume: 39 start-page: 2598 year: 2001 end-page: 2606 ident: b0175 article-title: Flat polymer ribbons and other shapes by electrospinning publication-title: J Polym Sci contributor: fullname: Reneker – volume: 1094 start-page: 1 year: 2008 end-page: 6 ident: b0120 article-title: Versatile core-sheath biofibers using coaxial electrospinning publication-title: Mater Res Soc contributor: fullname: Steckl – volume: 42 start-page: 261 year: 2001 end-page: 272 ident: b0155 article-title: The effect of processing variables on the morphology of electrospun nanofibers and textiles publication-title: Polymer contributor: fullname: Tan – volume: 108 start-page: 230 year: 2005 ident: 10.1016/j.actbio.2010.10.025_b0115 article-title: A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents publication-title: J Control Rel doi: 10.1016/j.jconrel.2005.08.006 contributor: fullname: Jiang – volume: 79 start-page: 144 year: 2000 ident: 10.1016/j.actbio.2010.10.025_b0025 article-title: Cell movement is guided by the rigidity of the substrate publication-title: Biophys J doi: 10.1016/S0006-3495(00)76279-5 contributor: fullname: Lo – volume: 39 start-page: 1102 year: 2006 ident: 10.1016/j.actbio.2010.10.025_b0130 article-title: Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning publication-title: Macromol doi: 10.1021/ma0517749 contributor: fullname: Wang – volume: 39 start-page: 2598 year: 2001 ident: 10.1016/j.actbio.2010.10.025_b0175 article-title: Flat polymer ribbons and other shapes by electrospinning publication-title: J Polym Sci doi: 10.1002/polb.10015 contributor: fullname: Koombhongse – volume: 16 start-page: 2133 year: 2004 ident: 10.1016/j.actbio.2010.10.025_b0045 article-title: Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response publication-title: Adv Mater doi: 10.1002/adma.200400883 contributor: fullname: Zaari – volume: 22 start-page: 1143 year: 2004 ident: 10.1016/j.actbio.2010.10.025_b0095 article-title: Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain publication-title: J Orthopaed Res doi: 10.1016/j.orthres.2004.02.001 contributor: fullname: Bryant – volume: 15 start-page: 437 year: 2009 ident: 10.1016/j.actbio.2010.10.025_b0140 article-title: Tailoring fiber diameter in electrospun polycaprolactone scaffolds for optimal cellular infiltration in cardiovascular tissue engineering publication-title: Tissue Eng doi: 10.1089/ten.tea.2007.0294 contributor: fullname: Balguid – volume: 16 start-page: 3406 year: 2004 ident: 10.1016/j.actbio.2010.10.025_b0110 article-title: Preparation of core-shell structured PCL-r-Gelatin bi-component nanofibers by coaxial electrospinning publication-title: Chem Mater doi: 10.1021/cm049580f contributor: fullname: Zhang – volume: 42 start-page: 261 year: 2001 ident: 10.1016/j.actbio.2010.10.025_b0155 article-title: The effect of processing variables on the morphology of electrospun nanofibers and textiles publication-title: Polymer doi: 10.1016/S0032-3861(00)00250-0 contributor: fullname: Deitzel – volume: 6 start-page: 355 year: 2010 ident: 10.1016/j.actbio.2010.10.025_b0050 article-title: Three-dimensional culture with stiff microstructures increases proliferation and slows osteogenic differentiation of human mesenchymal stem cells publication-title: Small doi: 10.1002/smll.200901757 contributor: fullname: Collins – volume: 61 start-page: 212 year: 2002 ident: 10.1016/j.actbio.2010.10.025_b0085 article-title: Interaction of 3T3 fibroblasts and endothelial cells with defined pore features publication-title: J Biomed Mater Res doi: 10.1002/jbm.10195 contributor: fullname: Salem – volume: 94 start-page: 13661 year: 1997 ident: 10.1016/j.actbio.2010.10.025_b0015 article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.94.25.13661 contributor: fullname: Pelham – volume: 13 start-page: 579 year: 2007 ident: 10.1016/j.actbio.2010.10.025_b0150 article-title: Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds publication-title: Tissue Eng doi: 10.1089/ten.2006.0205 contributor: fullname: Chen – volume: 19 start-page: 2961 year: 2009 ident: 10.1016/j.actbio.2010.10.025_b0020 article-title: Mechanical gradient cues for guided cell motility and control of cell behavior on uniform substrates publication-title: Adv Funct Mater doi: 10.1002/adfm.200900918 contributor: fullname: Cortese – volume: 6 start-page: 1227 year: 2010 ident: 10.1016/j.actbio.2010.10.025_b0180 article-title: Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning publication-title: Acta Biomater doi: 10.1016/j.actbio.2009.10.051 contributor: fullname: Soliman – volume: 30 start-page: 6867 year: 2009 ident: 10.1016/j.actbio.2010.10.025_b0030 article-title: The effect of substrate stiffness on adult neural stem cell behavior publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.09.002 contributor: fullname: Leipzig – volume: 94 start-page: 2914 year: 2008 ident: 10.1016/j.actbio.2010.10.025_b0060 article-title: Defining the role of matrix compliance and proteolysis in three-dimensional cell spreading and remodeling publication-title: Biophys J doi: 10.1529/biophysj.107.105841 contributor: fullname: Dikovsky – volume: 67 start-page: 44 year: 2000 ident: 10.1016/j.actbio.2010.10.025_b0070 article-title: Hepatocyte behavior within three-dimensional porous alginate scaffolds publication-title: Biotechnol Bioeng doi: 10.1002/(SICI)1097-0290(20000205)67:3<344::AID-BIT11>3.0.CO;2-2 contributor: fullname: Glicklis – volume: 74A start-page: 523 year: 2005 ident: 10.1016/j.actbio.2010.10.025_b0080 article-title: Synthetic scaffold morphology controls human dermal connective tissue formation publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.30232 contributor: fullname: Wang – volume: 43 start-page: 2852 year: 2005 ident: 10.1016/j.actbio.2010.10.025_b0125 article-title: Double-layered composite nanofibers and their mechanical performance publication-title: J Poly Sci B Poly Phys doi: 10.1002/polb.20572 contributor: fullname: Huang – volume: 47 start-page: 1394 year: 2008 ident: 10.1016/j.actbio.2010.10.025_b0005 article-title: The role of matrix stiffness in regulating cell behavior publication-title: Hepatology doi: 10.1002/hep.22193 contributor: fullname: Wells – volume: 75A start-page: 742 year: 2005 ident: 10.1016/j.actbio.2010.10.025_b0055 article-title: Crosslinked chitosan: its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.30489 contributor: fullname: Subramanian – volume: 70 start-page: 606 year: 2000 ident: 10.1016/j.actbio.2010.10.025_b0075 article-title: Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development publication-title: Biotechnol Bioeng doi: 10.1002/1097-0290(20001220)70:6<606::AID-BIT2>3.0.CO;2-H contributor: fullname: Ma – volume: 15 start-page: 1929 year: 2003 ident: 10.1016/j.actbio.2010.10.025_b0105 article-title: Compound core–shell polymer nanofibers by co-electrospinning publication-title: Adv Mater doi: 10.1002/adma.200305136 contributor: fullname: Sun – volume: 84A start-page: 1078 year: 2007 ident: 10.1016/j.actbio.2010.10.025_b0160 article-title: Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.31498 contributor: fullname: Powell – volume: 310 start-page: 1139 year: 2005 ident: 10.1016/j.actbio.2010.10.025_b0010 article-title: Tissue cells feel and respond to the stiffness of their substrate publication-title: Science doi: 10.1126/science.1116995 contributor: fullname: Discher – volume: 115 start-page: 3130 year: 2010 ident: 10.1016/j.actbio.2010.10.025_b0145 article-title: The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers publication-title: J Appl Polym Sci doi: 10.1002/app.31396 contributor: fullname: Jacobs – volume: 39 start-page: 4605 year: 2004 ident: 10.1016/j.actbio.2010.10.025_b0165 article-title: Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF publication-title: J Mater Sci doi: 10.1023/B:JMSC.0000034155.93428.ea contributor: fullname: Shawon – volume: 1094 start-page: 1 year: 2008 ident: 10.1016/j.actbio.2010.10.025_b0120 article-title: Versatile core-sheath biofibers using coaxial electrospinning publication-title: Mater Res Soc doi: 10.1557/PROC-1094-DD06-02 contributor: fullname: Han – volume: 16 start-page: 2062 year: 2004 ident: 10.1016/j.actbio.2010.10.025_b0100 article-title: Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret publication-title: Adv Mater doi: 10.1002/adma.200400606 contributor: fullname: Li – volume: 15 start-page: 2177 year: 2009 ident: 10.1016/j.actbio.2010.10.025_b0065 article-title: Engineered human skin fabricated using electrospun collagen-PCL blends: morphogenesis and mechanical properties publication-title: Tissue Eng doi: 10.1089/ten.tea.2008.0473 contributor: fullname: Powell – volume: 50 start-page: 428 year: 2000 ident: 10.1016/j.actbio.2010.10.025_b0090 article-title: Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold publication-title: J Biomed Mater Res doi: 10.1002/(SICI)1097-4636(20000605)50:3<428::AID-JBM18>3.0.CO;2-H contributor: fullname: McClary – volume: 83A start-page: 372 year: 2007 ident: 10.1016/j.actbio.2010.10.025_b0135 article-title: Biodegradable fibrous scaffolds composed of gelatin coated poly(epsilon-caprolactone) prepared by coaxial electrospinning publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.31242 contributor: fullname: Zhao – volume: 40 start-page: 2259 year: 2002 ident: 10.1016/j.actbio.2010.10.025_b0170 article-title: Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats publication-title: J Polym Sci doi: 10.1002/polb.10293 contributor: fullname: Lee – volume: 31 start-page: 385 year: 2010 ident: 10.1016/j.actbio.2010.10.025_b0035 article-title: The effect of matrix stiffness on mesenchymal stem cell differentiation in a three-dimensional thixotropic gel publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.09.057 contributor: fullname: Pek – volume: 15 start-page: 935 year: 2009 ident: 10.1016/j.actbio.2010.10.025_b0040 article-title: Effect of scaffold stiffness on myoblast differentiation publication-title: Tissue Eng doi: 10.1089/ten.tea.2008.0111 contributor: fullname: Levy-Mishali |
SSID | ssj0038128 |
Score | 2.2256532 |
Snippet | Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking,... |
SourceID | proquest crossref pubmed fao elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1133 |
SubjectTerms | bioactive properties Biocompatible Materials Cellular coatings Coaxial electrospinning Correlation crosslinking Density Electrospinning Feed rate Fibers Gelatin Mechanical properties Microscopy, Confocal Microscopy, Electron, Scanning Microscopy, Electron, Transmission PCL phenotype Polyesters - chemistry polymers Scaffold Scaffolds solvents Stiffness Tensile Strength Tissue Engineering viability |
Title | Regulation of electrospun scaffold stiffness via coaxial core diameter |
URI | https://dx.doi.org/10.1016/j.actbio.2010.10.025 https://www.ncbi.nlm.nih.gov/pubmed/20977951 https://search.proquest.com/docview/1671310148 https://search.proquest.com/docview/848685206 https://search.proquest.com/docview/918068236 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wscUKFAQ0tlJK5h7cSJnWNVdbWA6IGyUm-WHdtoUUlW7C7ixG9nJh-olbpC4urYUvxszzzb43kAb0PuRG1J30V6ncqgqxRpBE9VWfgy8KwqIp1Dfroq5wv54aa42YOL8S0MhVUOtr-36Z21HkqmA5rT1XI5vUYunSl0R6JLYkIZPw_QHWV6Agfn7z_Or0aDjD6pk1il-ik1GF_QdWFett64ZdvHeFGYF2lmP-yh9qNtd_PQzh_NDuHJQCTZef-vT2EvNM_g8Z30gkcw-9wLzSP0rI1sULxZr7YNW9c2xvbWM1zhMZK5Yz-XltWt_YUTklFuS4Yz5zsFyzyHxezyy8U8HXQT0loWfJNWyJpDxjXue6sgXIgqtxkvo3cqFrW3XuSqKqOURUX3gl4qL7mLyuc5bmZqnr-ASdM24RhYtFLWyJm84-jGcuEihUpJZ0NRRS9EAumIlVn16THMGDf2zfTYGsKWShHbBNQIqLk3zAYt-D9aHiP-xn5F22cW1xmd1OBXhXQjgTfjoBhcHHTjYZvQbtdGlLgHJzVinQDbUUdLXeoC8dldpRKal6QMn8DLfsz_djbjSKCRpb76746dwKP-nJri2k5hsvmxDa-R6GzcGey_-y3Ohun8B9eo-NQ |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9wgEB6lyaHtIUqfcfqiUq_Wgo2NOUZRV5sm2UOTlXJDYKDaqLVX3d2qP78zflSt1FWkXjFI5gNmPmCYD-BDyJ2oLem7SF-lMlQ6RRrBU1UWvgw800Wkc8ireTlbyE-3xe0enI1vYSiscrD9vU3vrPVQMhnQnKyWy8k1culMoTsSXRITyvh5gGxA4-o8OD2_mM1Hg4w-qZNYpfopNRhf0HVhXrbeuGXbx3hRmBdpZv_bQz2Itt3NQzt_ND2Cw4FIstP-X5_AXmiewuM_0gs-g-nnXmgeoWdtZIPizXq1bdi6tjG2Xz3DFR4jmTv2Y2lZ3dqfOCEZ5bZkOHO-UbDMc1hMP96czdJBNyGtZcE3qUbWHDJe4b5XB-FCVLnNeBm9U7GovfUiV7qMUhaa7gW9VF5yF5XPc9zM1Dx_AftN24RjYNFKWSNn8o6jG8uFixQqJZ0NhY5eiATSESuz6tNjmDFu7M702BrClkoR2wTUCKj5a5gNWvB7Wh4j_sZ-QdtnFtcZndTgV4V0I4H346AYXBx042Gb0G7XRpS4Byc14ioBtqNOJauyKhCf3VW0qHhJyvAJvOzH_HdnM44EGlnqyX937B08nN1cXZrL8_nFK3jUn1lTjNtr2N9834Y3SHo27u0wqX8B3Tn6yA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+electrospun+scaffold+stiffness+via+coaxial+core+diameter&rft.jtitle=Acta+biomaterialia&rft.au=Drexler%2C+J+W&rft.au=Powell%2C+H+M&rft.date=2011-03-01&rft.eissn=1878-7568&rft.volume=7&rft.issue=3&rft.spage=1133&rft.epage=1139&rft_id=info:doi/10.1016%2Fj.actbio.2010.10.025&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |