Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis
Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-C...
Saved in:
Published in | The Journal of experimental medicine Vol. 217; no. 8 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
03.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-Cre–driven (KPC) mouse model of pancreatic cancer. cDC1 dysfunction is systemic and progressive, driven by increased apoptosis, and results in suboptimal up-regulation of T cell–polarizing cytokines during cDC1 maturation. The underlying mechanism is linked to elevated IL-6 concomitant with neoplasia. Neutralization of IL-6 in vivo ameliorates cDC1 apoptosis, rescuing cDC1 abundance in tumor-bearing mice. CD8+ T cell response to vaccination is impaired as a result of cDC1 dysregulation. Yet, combination therapy with CD40 agonist and Flt3 ligand restores cDC1 abundance to normal levels, decreases cDC1 apoptosis, and repairs cDC1 maturation to drive superior control of tumor outgrowth. Our study therefore reveals the unexpectedly early and systemic onset of cDC1 dysregulation during pancreatic carcinogenesis and suggests therapeutically tractable strategies toward cDC1 repair. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Disclosures: E.L. Carpenter reported personal fees from Imedex, personal fees from AstraZeneca, grants from Janssen, grants from Merck, and grants from Becton Dickinson outside the submitted work. G.L. Beatty reported personal fees from Seattle Genetics, personal fees from Aduro Biotech, personal fees from AstraZeneca, personal fees from Bristol-Myers Squibb, personal fees from Genmab, personal fees from Merck, personal fees from Shattuck Labs, personal fees from Boehinger Ingelheim, personal fees from BiolineRx, personal fees from Incyte, grants from Arcus Biosciences, grants from Verastem, grants from Halozyme, grants from Biothera, grants from Newlink, grants from Janssen, grants from Bristol-Myers Squibb, and grants from Incyte outside the submitted work; in addition, G.L. Beatty had a patent to 10577417 with royalties paid "Novartis, U of Pennsylvania." R.H. Vonderheide reported personal fees from Celgene, personal fees from Celldex, personal fees from Janssen, personal fees from Lilly, personal fees from Medimmune, personal fees from Verastem, grants from Apexigen, grants from Fibrogen, grants from Inovio, grants from Janssen, and grants from Lilly outside the submitted work; in addition, R.H. Vonderheide had a patent to cellular immunotherapy licensed "Novartis" and a patent to VLA-4 research antibody licensed "BD Pharmigen." No other disclosures were reported. |
ISSN: | 0022-1007 1540-9538 1540-9538 |
DOI: | 10.1084/jem.20190673 |