Design Methodology for a Miniaturized Frequency Selective Surface Using Lumped Reactive Components
The design methodology is described for a miniaturized frequency selective surface (FSS) using lumped reactive components. Capacitive and inductive elements are utilized in metallic patches to create current loops similar to that observed in bandpass aperture type FSS. It is shown that the resonant...
Saved in:
Published in | IEEE transactions on antennas and propagation Vol. 57; no. 9; pp. 2732 - 2738 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.09.2009
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The design methodology is described for a miniaturized frequency selective surface (FSS) using lumped reactive components. Capacitive and inductive elements are utilized in metallic patches to create current loops similar to that observed in bandpass aperture type FSS. It is shown that the resonant frequency of the FSS is controlled mainly by the values of the lumped components and to a lesser extent by the distance between the components. It is insensitive to the periodicity. Issues such as the effects of component loss and oblique incidence are reported using full field predictions. Measurements are shown for an FSS with unit cell periodicity of ¿/36. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2009.2027174 |