Modeling of Wet Stiction in Microelectromechanical Systems (MEMS)

Stiction, which is a term commonly used in micro-electromechanical systems (MEMS) to refer to adhesion, is a major failure mode in MEMS. Undesirable stiction, which results from the contact between surfaces, can severely compromise the reliability of MEMS. In this paper, a model is developed for pre...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 16; no. 5; pp. 1276 - 1285
Main Authors Hariri, Alireza, Zu, Jean, Ben Mrad, Ridha
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Stiction, which is a term commonly used in micro-electromechanical systems (MEMS) to refer to adhesion, is a major failure mode in MEMS. Undesirable stiction, which results from the contact between surfaces, can severely compromise the reliability of MEMS. In this paper, a model is developed for predicting stiction between uncharged micro parts interacting in a humid environment. In this condition, for hydrophilic surfaces, the capillary and asperity deformation forces are dominant. Here, using a newly developed multiple asperity contact model, a model is developed for the capillary force between rough micro surfaces, and the new model is combined with a newly developed elastic/plastic deformation model for rough surfaces to solve for the equilibrium of the forces. This in turn yields the equilibrium distance between micro surfaces using which the apparent work of adhesion can be found. The theoretical results are compared with the available experimental data from literature. The developed model can be easily used for design purposes. If the topographic data and material constants are known, the desirable adhesion parameters can be quickly found from the model.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2007.904349