Optimization of Transmit Parameters in Cardiac Strain Imaging With Full and Partial Aperture Coherent Compounding

Coherent compounding methods using the full or partial transmit aperture have been investigated as a possible means of increasing strain measurement accuracy in cardiac strain imaging; however, the optimal transmit parameters in either compounding approach have yet to be determined. The relationship...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 65; no. 5; pp. 684 - 696
Main Authors Sayseng, Vincent, Grondin, Julien, Konofagou, Elisa E.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Coherent compounding methods using the full or partial transmit aperture have been investigated as a possible means of increasing strain measurement accuracy in cardiac strain imaging; however, the optimal transmit parameters in either compounding approach have yet to be determined. The relationship between strain estimation accuracy and transmit parameters-specifically the subaperture, angular aperture, tilt angle, number of virtual sources, and frame rate- in partial aperture (subaperture compounding) and full aperture (steered compounding) fundamental mode cardiac imaging was thus investigated and compared. Field II simulation of a 3-D cylindrical annulus undergoing deformation and twist was developed to evaluate accuracy of 2-D strain estimation in crosssectional views. The tradeoff between frame rate and number of virtual sources was then investigated via transthoracic imaging in the parasternal short-axis view of five healthy human subjects, using the strain filter to quantify estimation precision. Finally, the optimized subaperture compounding sequence (25-element subperture, 90° angular aperture, 10 virtual sources, 300-Hz frame rate) was compared to the optimized steered compounding sequence (60° angular aperture, 15° tilt, 10 virtual sources, 300-Hz frame rate) via transthoracic imaging of five healthy subjects. Both approaches were determined to estimate cumulative radial strain with statistically equivalent precision (subaperture compounding E(SNRe|ε = 41%) = 3.56, and steered compounding E(SNRe|ε = 41%) = 4.26).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0885-3010
1525-8955
1525-8955
DOI:10.1109/TUFFC.2018.2807765