Histopathological analysis and in situ localisation of Australian tiger snake venom in two clinically envenomed domestic animals

To assess histopathological changes in clinically envenomed tiger snake patients and identify tissue specific localisation of venom toxins using immunohistochemistry. One feline and one canine patient admitted to the Murdoch Pet Emergency Centre (MPEC), Murdoch University with tiger snake ( Notechis...

Full description

Saved in:
Bibliographic Details
Published inToxicon (Oxford) Vol. 58; no. 4; pp. 304 - 314
Main Authors Jacoby-Alner, T.E., Stephens, N., Davern, K.M., Balmer, L., Brown, S.G.A., Swindells, K.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.09.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To assess histopathological changes in clinically envenomed tiger snake patients and identify tissue specific localisation of venom toxins using immunohistochemistry. One feline and one canine patient admitted to the Murdoch Pet Emergency Centre (MPEC), Murdoch University with tiger snake ( Notechis sp.) envenoming. Both patients died as a result of envenomation. Non-envenomed tissue was also collected and used for comparison. Biopsy samples (heart, lung, kidney andskeletal muscle tissue) were retrieved 1–2 h post death and processed for histopathological examination using Haemotoxylin and Eosin, Martius Scarlet Blue and Periodic Acid Schiff staining. Tissues were examined by light microscopy and tissue sections subjected to immunohistochemical staining using in-house generated monoclonal and polyclonal antibodies against Notechis venoms. Venom-induced pathological changes were observed in the lungs, kidneys and muscle tissue of both patients. Evidence, not previously noted, of procoagulant venom effects were apparent, with formed thrombi in the heart, lungs (small fibrillar aggregates and larger, discrete thrombi) and kidneys. Immunohistochemical assays revealed venom present in the pulmonary tissue, in and around the glomerular capsule and surrounding tubules in renal tissue and scattered throughout the Gastrocnemius muscle tissue. This work has shown pathological evidence of procoagulant venom activity supporting previous suggestions that an initial thrombotic state occurs in envenomed patients. We have shown that venom toxins are able to be localised to specific tissues, in this case, venom was detected in the lung, kidney and muscle tissues of clinically envenomed animals. Future work will examine specific toxin localisation using monoclonal antibodies and identify if antivenom molecules are able to reach their target tissues. ► Venom-induced pathological changes were observed in the lungs, kidneys and muscle tissue of both patients. ► Evidence, not previously noted, of procoagulant venom effects were apparent, with formed thrombi in the heart, lungs (small fibrillar aggregates and larger, discrete thrombi) and kidneys. ► Work has shown pathological evidence of procoagulant venom activity supporting previous suggestions that an initial thrombotic state occurs in envenomed patients. ► Illustrates venom localisation in the lung, kidney and muscle tissues of clinically envenomed animals.
Bibliography:http://dx.doi.org/10.1016/j.toxicon.2011.07.008
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0041-0101
1879-3150
DOI:10.1016/j.toxicon.2011.07.008