Impact of Using Uniform Attenuation Coefficients for Heterogeneously Dense Breasts in a Dedicated Breast PET/X-Ray Scanner
We investigated PET image quantification when using a uniform attenuation coefficient (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>) for attenuation correction (AC) of anthropomorphic density phantoms derived from high-resolution brea...
Saved in:
Published in | IEEE transactions on radiation and plasma medical sciences Vol. 4; no. 5; pp. 585 - 593 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We investigated PET image quantification when using a uniform attenuation coefficient (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>) for attenuation correction (AC) of anthropomorphic density phantoms derived from high-resolution breast CT scans. A breast PET system was modeled with perfect data corrections except for AC. Using uniform <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> for AC resulted in quantitative errors roughly proportional to the difference between <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> used in AC (<inline-formula> <tex-math notation="LaTeX">\mu _{\mathrm{ AC}} </tex-math></inline-formula>) and local <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>, yielding approximately ± 5% bias, corresponding to the variation of <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> for 511-keV photons in breast tissue. Global bias was lowest when uniform <inline-formula> <tex-math notation="LaTeX">\mu _{\mathrm{ AC}} </tex-math></inline-formula> was equal to the phantom mean <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">\mu _{\mathrm{ mean}} </tex-math></inline-formula>). Local bias in 10-mm spheres increased as the sphere <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> deviated from <inline-formula> <tex-math notation="LaTeX">\mu _{\mathrm{ mean}} </tex-math></inline-formula>, but remained only 2%-3% when the <inline-formula> <tex-math notation="LaTeX">\mu _{\mathrm{ sphere}} </tex-math></inline-formula> was 6.5% higher than <inline-formula> <tex-math notation="LaTeX">\mu _{\mathrm{ mean}} </tex-math></inline-formula>. Bias varied linearly with and was roughly proportional to local <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> mismatch. Minimizing local bias, e.g., in a small sphere, required the use of a uniform <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> value between the local <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> and the <inline-formula> <tex-math notation="LaTeX">\mu _{\mathrm{ mean}} </tex-math></inline-formula>. Thus, biases from using uniform-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> AC are low when local <inline-formula> <tex-math notation="LaTeX">\mu _{\mathrm{ sphere}} </tex-math></inline-formula> is close to <inline-formula> <tex-math notation="LaTeX">\mu _{\mathrm{ mean}} </tex-math></inline-formula>. As the <inline-formula> <tex-math notation="LaTeX">\mu _{\mathrm{ sphere}} </tex-math></inline-formula> increasingly differs from the phantom <inline-formula> <tex-math notation="LaTeX">\mu _{\mathrm{ mean}} </tex-math></inline-formula>, bias increases, and the optimal uniform <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> is less predictable, having a value between <inline-formula> <tex-math notation="LaTeX">\mu _{\mathrm{ sphere}} </tex-math></inline-formula> and the phantom <inline-formula> <tex-math notation="LaTeX">\mu _{\mathrm{ mean}} </tex-math></inline-formula>. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2469-7311 2469-7303 |
DOI: | 10.1109/TRPMS.2020.2991120 |