Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys

The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The twinning critical resolved shear stress (CRSS) is a fundamental parameter for evaluating the strength-ductility properties of MHEAs. Here we...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 149; pp. 388 - 396
Main Authors Huang, He, Li, Xiaoqing, Dong, Zhihua, Li, Wei, Huang, Shuo, Meng, Daqiao, Lai, Xinchun, Liu, Tianwei, Zhu, Shengfa, Vitos, Levente
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The twinning critical resolved shear stress (CRSS) is a fundamental parameter for evaluating the strength-ductility properties of MHEAs. Here we construct and apply an extended twinning nucleation Peierls-Nabarro (P-N) model to predict the twinning CRSSes of face-centered cubic (FCC) CrCoNi-based MHEAs. The order of the twinning CRSSes of the selected alloys is CrCoNi>CrCoNiMn>CrCoNiFe>CrCoNiFeMn and the values are 291, 277, 274 and 236 MPa, respectively. These theoretical predictions agree very well with the experimental twinning CRSSes of CrCoNi and CrCoNiFeMn accounting for 260±30 and 235±10 MPa, respectively and are perfectly consistent with the strength-ductility properties including yield stress, ultimate tensile stress and uniform elongation for fracture of the FCC CrCoNi-based MHEAs obtained at cryogenic temperatures. The present method offers a first-principle quantum-mechanical tool for optimizing and designing new MHEAs with exceptional mechanical properties. [Display omitted]
AbstractList The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The twinning critical resolved shear stress (CRSS) is a fundamental parameter for evaluating the strength-ductility properties of MHEAs. Here we construct and apply an extended twinning nucleation Peierls-Nabarro (P-N) model to predict the twinning CRSSes of face-centered cubic (FCC) CrCoNi-based MHEAs. The order of the twinning CRSSes of the selected alloys is CrCoNi > CrCoNiMn > CrCoNiFe > CrCoNiFeMn and the values are 291, 277, 274 and 236 MPa, respectively. These theoretical predictions agree very well with the experimental twinning CRSSes of CrCoNi and CrCoNiFeMn accounting for 260 +/- 30 and 235 +/- 10 MPa, respectively and are perfectly consistent with the strength-ductility properties including yield stress, ultimate tensile stress and uniform elongation for fracture of the FCC CrCoNi-based MHEAs obtained at cryogenic temperatures. The present method offers a first-principle quantum-mechanical tool for optimizing and designing new MHEAs with exceptional mechanical properties. 
The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The twinning critical resolved shear stress (CRSS) is a fundamental parameter for evaluating the strength-ductility properties of MHEAs. Here we construct and apply an extended twinning nucleation Peierls-Nabarro (P-N) model to predict the twinning CRSSes of face-centered cubic (FCC) CrCoNi-based MHEAs. The order of the twinning CRSSes of the selected alloys is CrCoNi>CrCoNiMn>CrCoNiFe>CrCoNiFeMn and the values are 291, 277, 274 and 236 MPa, respectively. These theoretical predictions agree very well with the experimental twinning CRSSes of CrCoNi and CrCoNiFeMn accounting for 260±30 and 235±10 MPa, respectively and are perfectly consistent with the strength-ductility properties including yield stress, ultimate tensile stress and uniform elongation for fracture of the FCC CrCoNi-based MHEAs obtained at cryogenic temperatures. The present method offers a first-principle quantum-mechanical tool for optimizing and designing new MHEAs with exceptional mechanical properties. [Display omitted]
The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The twinning critical resolved shear stress (CRSS) is a fundamental parameter for evaluating the strength-ductility properties of MHEAs. Here we construct and apply an extended twinning nucleation Peierls-Nabarro (P-N) model to predict the twinning CRSSes of face-centered cubic (FCC) CrCoNi-based MHEAs. The order of the twinning CRSSes of the selected alloys is CrCoNi > CrCoNiMn > CrCoNiFe > CrCoNiFeMn and the values are 291, 277, 274 and 236 MPa, respectively. These theoretical predictions agree very well with the experimental twinning CRSSes of CrCoNi and CrCoNiFeMn accounting for 260 +/- 30 and 235 +/- 10 MPa, respectively and are perfectly consistent with the strength-ductility properties including yield stress, ultimate tensile stress and uniform elongation for fracture of the FCC CrCoNi-based MHEAs obtained at cryogenic temperatures. The present method offers a first-principle quantum-mechanical tool for optimizing and designing new MHEAs with exceptional mechanical properties.
Author Vitos, Levente
Huang, Shuo
Huang, He
Li, Xiaoqing
Li, Wei
Meng, Daqiao
Lai, Xinchun
Dong, Zhihua
Liu, Tianwei
Zhu, Shengfa
Author_xml – sequence: 1
  givenname: He
  surname: Huang
  fullname: Huang, He
  email: hehua@kth.se
  organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-10044, Sweden
– sequence: 2
  givenname: Xiaoqing
  surname: Li
  fullname: Li, Xiaoqing
  organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-10044, Sweden
– sequence: 3
  givenname: Zhihua
  surname: Dong
  fullname: Dong, Zhihua
  organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-10044, Sweden
– sequence: 4
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-10044, Sweden
– sequence: 5
  givenname: Shuo
  surname: Huang
  fullname: Huang, Shuo
  organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-10044, Sweden
– sequence: 6
  givenname: Daqiao
  surname: Meng
  fullname: Meng, Daqiao
  email: mengdaqiao@caep.cn
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621900, PR China
– sequence: 7
  givenname: Xinchun
  surname: Lai
  fullname: Lai, Xinchun
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621900, PR China
– sequence: 8
  givenname: Tianwei
  surname: Liu
  fullname: Liu, Tianwei
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621900, PR China
– sequence: 9
  givenname: Shengfa
  surname: Zhu
  fullname: Zhu, Shengfa
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621900, PR China
– sequence: 10
  givenname: Levente
  orcidid: 0000-0003-2832-3293
  surname: Vitos
  fullname: Vitos, Levente
  email: levente@kth.se
  organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-10044, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227752$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-356197$$DView record from Swedish Publication Index
BookMark eNqFkU1P3DAQhq2KSgXan1DJP4Ck_kzW4oBQoLQSai8tV2vWcXZnydor2wHtv29g4dLLnmYO7zMjvc8ZOQkxeEK-clZzxptvmxpcgS2UWjC-qJmomWw_kFO-aGUllJYn8y61qRql1SdylvOGMS5axU7JQ5ewoIOR5pJ8znSIiZZnDAHDiobJjR4KxkAx0C518RdWS8i-p1vf47SlEHq6xtWa-lBS3O0pjGPc58_k4wBj9l_e5jn5-_32T_ejuv9997O7vq-c0qxUHBgD0fbKg5FeDUZKowa9ULwFbhru5aAaJYUWg1FiyRtjgCnHnewb41gvz8nF4W5-9rtpaXcJt5D2NgLaG3y4tjGt7DRZqRtu2jleHY8_lrUVom21mPOXh7xLMefkB-uwvPZREuBoObMvBuzGvhmwLwYsE3Y2MNP6P_r93zHu6sD5ubkn9Mlmhz64ufHkXbF9xCMX_gGLQKYT
CitedBy_id crossref_primary_10_1016_j_actamat_2019_11_055
crossref_primary_10_1016_j_actamat_2023_119230
crossref_primary_10_1016_j_intermet_2024_108560
crossref_primary_10_3390_solids4040021
crossref_primary_10_1088_1361_648X_abda78
crossref_primary_10_1016_j_jallcom_2020_154918
crossref_primary_10_1016_j_mtcomm_2023_106435
crossref_primary_10_1016_j_matpr_2019_09_084
crossref_primary_10_1002_adem_202400773
crossref_primary_10_1016_j_mtcomm_2023_107884
crossref_primary_10_1016_j_jmrt_2020_05_069
crossref_primary_10_3390_met13091527
crossref_primary_10_1016_j_jmst_2021_02_034
crossref_primary_10_1016_j_actamat_2018_12_015
crossref_primary_10_1016_j_intermet_2021_107239
crossref_primary_10_1016_j_msea_2023_145142
crossref_primary_10_1016_j_jallcom_2020_155332
crossref_primary_10_1016_j_actamat_2022_117693
crossref_primary_10_1016_j_scriptamat_2018_06_002
crossref_primary_10_1016_j_jallcom_2019_04_035
crossref_primary_10_1080_02670836_2020_1851437
crossref_primary_10_1016_j_jallcom_2022_168016
crossref_primary_10_1016_j_actamat_2024_120190
crossref_primary_10_3390_cryst10121154
crossref_primary_10_1016_j_mser_2021_100645
crossref_primary_10_1557_jmr_2020_256
crossref_primary_10_1016_j_jmst_2020_08_065
crossref_primary_10_1016_j_actamat_2020_03_004
crossref_primary_10_1016_j_actamat_2022_117989
crossref_primary_10_1016_j_ijfatigue_2023_107723
crossref_primary_10_1080_08927022_2022_2032692
crossref_primary_10_1016_j_scriptamat_2019_12_004
crossref_primary_10_1103_PhysRevMaterials_7_053601
crossref_primary_10_1016_j_intermet_2018_12_009
crossref_primary_10_1016_j_scriptamat_2019_06_019
crossref_primary_10_1073_pnas_2114167118
crossref_primary_10_1016_j_mattod_2024_10_004
crossref_primary_10_1002_adem_202001044
crossref_primary_10_1016_j_msea_2020_140101
crossref_primary_10_1016_j_jmst_2020_11_067
crossref_primary_10_1016_j_ijplas_2023_103732
crossref_primary_10_1016_j_jallcom_2024_175452
crossref_primary_10_1016_j_scriptamat_2019_10_042
crossref_primary_10_1016_j_matchar_2024_114314
crossref_primary_10_1016_j_ijplas_2020_102819
crossref_primary_10_1016_j_jmst_2021_10_006
crossref_primary_10_1016_j_matchar_2021_111284
crossref_primary_10_1016_j_jmst_2024_04_064
crossref_primary_10_1016_j_jallcom_2023_170555
crossref_primary_10_1016_j_jallcom_2020_155911
crossref_primary_10_1016_j_mechmat_2024_105084
crossref_primary_10_1016_j_commatsci_2022_111831
crossref_primary_10_1007_s11665_021_06092_6
crossref_primary_10_1016_j_jallcom_2020_156321
crossref_primary_10_1016_j_mtla_2024_102250
crossref_primary_10_1073_pnas_1808660115
crossref_primary_10_1016_j_actamat_2018_08_053
crossref_primary_10_1016_j_msea_2023_145522
crossref_primary_10_1016_j_addma_2024_104332
crossref_primary_10_1016_j_jmst_2022_07_031
crossref_primary_10_1016_j_msea_2024_146453
crossref_primary_10_1038_s41598_020_58273_3
crossref_primary_10_1016_j_matchar_2019_02_034
crossref_primary_10_1016_j_addma_2020_101202
crossref_primary_10_1016_j_jmrt_2022_09_106
crossref_primary_10_1016_j_jmst_2023_12_024
crossref_primary_10_2139_ssrn_4108863
crossref_primary_10_1007_s00339_021_04835_9
crossref_primary_10_1016_j_actamat_2018_07_028
crossref_primary_10_1016_j_scriptamat_2019_01_016
crossref_primary_10_1103_PhysRevMaterials_5_075004
crossref_primary_10_1016_j_actamat_2020_11_012
crossref_primary_10_1016_j_mtcomm_2021_102960
crossref_primary_10_1016_j_wear_2021_203755
crossref_primary_10_1016_j_actamat_2023_119403
crossref_primary_10_1016_j_intermet_2021_107345
crossref_primary_10_1002_adem_201801266
crossref_primary_10_1016_j_msea_2018_09_028
crossref_primary_10_3390_e20090655
crossref_primary_10_1016_j_jallcom_2021_161412
crossref_primary_10_1016_j_intermet_2019_106682
crossref_primary_10_1063_5_0063367
crossref_primary_10_1016_j_jallcom_2018_07_033
crossref_primary_10_1016_j_actamat_2019_04_057
crossref_primary_10_1016_j_intermet_2021_107399
crossref_primary_10_1016_j_jmst_2020_02_073
crossref_primary_10_1126_sciadv_adq6398
crossref_primary_10_1016_j_intermet_2021_107271
crossref_primary_10_1016_j_mtcomm_2022_104059
crossref_primary_10_1016_j_ijplas_2022_103482
crossref_primary_10_1016_j_jmrt_2024_04_186
crossref_primary_10_1016_j_msea_2021_142059
crossref_primary_10_1016_j_actamat_2021_117371
crossref_primary_10_1016_j_msea_2021_142110
crossref_primary_10_1016_j_jallcom_2018_10_187
crossref_primary_10_1016_j_mtla_2019_100442
crossref_primary_10_1103_PhysRevE_104_025310
crossref_primary_10_1016_j_ijplas_2024_104051
crossref_primary_10_1103_PhysRevMaterials_3_113603
crossref_primary_10_1002_sstr_202400110
crossref_primary_10_1007_s11665_020_05221_x
crossref_primary_10_3390_modelling5010019
crossref_primary_10_1016_j_ijplas_2023_103770
crossref_primary_10_1016_j_jmst_2020_11_029
crossref_primary_10_2139_ssrn_3981498
crossref_primary_10_1016_j_ijplas_2023_103651
crossref_primary_10_1016_j_scriptamat_2019_11_053
crossref_primary_10_1063_5_0063761
crossref_primary_10_1016_j_matchar_2018_06_019
crossref_primary_10_3390_met15030247
crossref_primary_10_1016_j_actamat_2023_118699
crossref_primary_10_1016_j_commatsci_2022_111763
crossref_primary_10_1016_j_intermet_2019_106578
crossref_primary_10_1016_j_msea_2020_140544
crossref_primary_10_1007_s11669_021_00877_x
crossref_primary_10_1016_j_jallcom_2019_152025
crossref_primary_10_1016_j_matdes_2020_109396
crossref_primary_10_1016_j_jmst_2022_08_033
crossref_primary_10_1007_s40195_024_01812_y
crossref_primary_10_3390_met14050560
crossref_primary_10_1016_j_msea_2020_139591
crossref_primary_10_1016_j_scriptamat_2021_114417
crossref_primary_10_1016_j_matdes_2019_107955
crossref_primary_10_1080_14686996_2022_2080512
crossref_primary_10_1016_j_jallcom_2019_03_235
crossref_primary_10_1016_j_actamat_2025_120918
crossref_primary_10_1007_s11431_019_1517_8
crossref_primary_10_1016_j_jallcom_2018_06_122
crossref_primary_10_1016_j_cossms_2022_101032
crossref_primary_10_1016_j_matchar_2022_111795
crossref_primary_10_1016_j_msea_2021_141545
crossref_primary_10_1016_j_actamat_2023_118884
crossref_primary_10_1016_j_ijplas_2021_103144
crossref_primary_10_1016_j_actamat_2023_119179
crossref_primary_10_1016_j_ijplas_2024_103940
crossref_primary_10_1016_j_jallcom_2024_177100
crossref_primary_10_1016_j_scriptamat_2019_09_020
crossref_primary_10_1016_j_ijplas_2021_102989
crossref_primary_10_1016_j_jmrt_2023_05_199
crossref_primary_10_1007_s11665_022_06794_5
crossref_primary_10_1007_s42864_021_00092_8
crossref_primary_10_1016_j_scriptamat_2021_114126
crossref_primary_10_3390_ma15196896
crossref_primary_10_1016_j_msea_2020_139224
crossref_primary_10_1016_j_jmrt_2023_10_266
crossref_primary_10_1088_2053_1591_ac45bc
crossref_primary_10_1016_j_ijplas_2019_08_013
crossref_primary_10_1080_14786435_2022_2135037
crossref_primary_10_1016_j_scriptamat_2024_116250
crossref_primary_10_1016_j_ijplas_2024_104226
crossref_primary_10_1016_j_jmrt_2021_09_095
crossref_primary_10_1016_j_triboint_2024_109725
crossref_primary_10_3390_nano10010059
Cites_doi 10.1016/j.actamat.2006.04.013
10.1016/j.actamat.2014.07.045
10.1016/0304-8853(84)90367-6
10.1016/j.actamat.2016.07.040
10.1088/0965-0393/19/8/085008
10.1016/j.scriptamat.2015.05.041
10.1016/j.actamat.2017.02.036
10.1088/0959-5309/59/2/309
10.1007/s40830-016-0061-4
10.1016/j.intermet.2013.10.024
10.1016/j.actamat.2016.08.047
10.1016/j.scriptamat.2016.11.014
10.1016/j.jmps.2004.05.002
10.1016/j.scriptamat.2010.11.033
10.1016/j.intermet.2014.12.004
10.1103/PhysRevLett.87.156401
10.1016/j.actamat.2016.10.038
10.1088/0965-0393/21/8/085004
10.1002/adem.200300567
10.1016/j.scriptamat.2015.09.009
10.1016/j.msea.2003.10.257
10.1063/1.2800806
10.1016/S1293-2558(03)00118-3
10.1016/j.actamat.2013.07.053
10.1038/ncomms10602
10.1016/j.actamat.2010.06.045
10.1016/j.actamat.2017.07.010
10.1016/j.intermet.2013.03.018
10.1103/PhysRevB.93.104201
10.1016/j.actamat.2015.08.050
10.1038/nature17981
10.1080/01418619508236229
10.1016/j.actamat.2007.08.042
10.1103/PhysRevLett.77.3865
10.1088/0965-0393/22/5/055008
10.1103/PhysRevB.64.014107
10.1038/ncomms14390
10.1016/j.actamat.2017.05.001
10.1016/j.matdes.2017.03.057
10.1016/j.actamat.2016.07.038
10.1016/j.actamat.2013.06.018
10.1088/0959-5309/52/1/305
10.1073/pnas.1400786111
10.1126/science.1254581
10.1016/j.actamat.2014.08.026
10.1016/j.actamat.2014.08.052
ContentType Journal Article
Copyright 2018 Acta Materialia Inc.
Copyright_xml – notice: 2018 Acta Materialia Inc.
DBID AAYXX
CITATION
ADTPV
AOWAS
D8V
DF2
DOI 10.1016/j.actamat.2018.02.037
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2453
EndPage 396
ExternalDocumentID oai_DiVA_org_uu_356197
oai_DiVA_org_kth_227752
10_1016_j_actamat_2018_02_037
S1359645418301459
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
R2-
SEW
SSH
T9H
ZY4
ADTPV
AOWAS
D8V
EFKBS
DF2
ID FETCH-LOGICAL-c450t-1a00a27d4ea93e4f93394f58417a1961e3f4643252f942b1699a04c1c3d69c0d3
IEDL.DBID .~1
ISSN 1359-6454
1873-2453
IngestDate Thu Aug 21 07:01:11 EDT 2025
Thu Aug 21 06:44:17 EDT 2025
Tue Jul 01 01:20:42 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Fri Feb 23 02:39:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Critical resolved shear stress (CRSS)
Medium and high entropy alloys (MHEAs)
Density functional theory
Twinning nucleation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-1a00a27d4ea93e4f93394f58417a1961e3f4643252f942b1699a04c1c3d69c0d3
ORCID 0000-0003-2832-3293
PageCount 9
ParticipantIDs swepub_primary_oai_DiVA_org_uu_356197
swepub_primary_oai_DiVA_org_kth_227752
crossref_citationtrail_10_1016_j_actamat_2018_02_037
crossref_primary_10_1016_j_actamat_2018_02_037
elsevier_sciencedirect_doi_10_1016_j_actamat_2018_02_037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Acta materialia
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib3) 2014; 345
Ghazisaeidi, Hector, Curtin (bib32) 2014; 80
Zhao, Li, Sun, Gong, Vitos (bib29) 2017; 124
Nabarro (bib14) 1947; 59
Vitos (bib20) 2001; 64
Tian, Lizárraga, Larsson, Holmström, Vitos (bib28) 2017; 136
Wu, Gao, Bei (bib38) 2016; 120
Gludovatz, Hohenwarter, Thurston, Bei, Wu, George, Ritchie (bib7) 2016; 7
Zhang, Zhuang, Hu, Kai, Liu (bib40) 2017; 130
Ojha, Sehitoglu (bib18) 2016; 2
Peierls (bib13) 1940; 52
Wu, Bei, Otto, Pharr, George (bib10) 2014; 46
Kibey, Liu, Johnson, Sehitoglu (bib15) 2007; 91
Huang, Li, Lu, Tian, Shen, Holmström, Vitos (bib27) 2015; 108
Perdew, Burke, Ernzerhof (bib23) 1996; 77
Vitos, Abrikosov, Johansson (bib19) 2001; 87
Gali, George (bib43) 2013; 39
Stepanov, Tikhonovsky, Yurchenko, Zyabkin, Klimova, Zherebtsov, Efimov, Salishchev (bib4) 2015; 59
Jin, Dunham, Gleiter, Hahn, Gumbsch (bib48) 2011; 64
Vitos, Nilsson, Johansson (bib22) 2006; 54
Zhao, Stocks, Zhang (bib39) 2017; 134
Patriarca, Ojha, Sehitoglu, Chumlyakov (bib41) 2016; 112
Staunton, Gyorffy, Pindor, Stocks, Winter (bib26) 1984; 45
Varvenne, Luque, Curtin (bib33) 2016; 118
Luque, Ghazisaeidi, Curtin (bib31) 2014; 81
Wu (bib42) 2014
Otto, Dlouhỳ, Somsen, Bei, Eggeler, George (bib37) 2013; 61
Zhang, Sheng, Wang, Gludovatz, Zhang, George, Yu, Mao, Ritchie (bib8) 2017; 8
Cantor, Chang, Knight, Vincent (bib2) 2004; 375
Bonny, Terentyev, Pasianot, Poncé, Bakaev (bib34) 2011; 19
Bonny, Castin, Terentyev (bib35) 2013; 21
Yasi, Hector, Trinkle (bib30) 2010; 58
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib1) 2004; 6
Jin, Bieler (bib44) 1995; 71
Wu, Bei, Pharr, George (bib9) 2014; 81
Kibey, Liu, Johnson, Sehitoglu (bib16) 2007; 55
Ma, Grabowski, Körmann, Neugebauer, Raabe (bib25) 2015; 100
Varvenne, Luque, Nöhring, Curtin (bib36) 2016; 93
Tadmor, Bernstein (bib47) 2004; 52
Jin, Sales, Stocks, Samolyuk, Daene, Weber, Zhang, Bei (bib24) 2016; 6
Wang, Sehitoglu (bib45) 2014; 22
Laplanche, Kostka, Horst, Eggeler, George (bib12) 2016; 118
Li, Li, Feng, Zhang, Sha, Lewandowski, Liaw, Zhang (bib6) 2017; 123
Johansson, Vitos, Korzhavyi (bib21) 2003; 5
Li, Pradeep, Deng, Raabe, Tasan (bib5) 2016; 534
Laplanche, Kostka, Reinhart, Hunfeld, Eggeler, George (bib11) 2017; 128
Wang, Sehitoglu (bib17) 2013; 61
Jo, Koo, Lee, Johansson, Vitos, Kwon (bib46) 2014; 111
Jin (10.1016/j.actamat.2018.02.037_bib44) 1995; 71
Jin (10.1016/j.actamat.2018.02.037_bib24) 2016; 6
Ghazisaeidi (10.1016/j.actamat.2018.02.037_bib32) 2014; 80
Wu (10.1016/j.actamat.2018.02.037_bib38) 2016; 120
Gali (10.1016/j.actamat.2018.02.037_bib43) 2013; 39
Jin (10.1016/j.actamat.2018.02.037_bib48) 2011; 64
Staunton (10.1016/j.actamat.2018.02.037_bib26) 1984; 45
Bonny (10.1016/j.actamat.2018.02.037_bib34) 2011; 19
Kibey (10.1016/j.actamat.2018.02.037_bib15) 2007; 91
Wu (10.1016/j.actamat.2018.02.037_bib9) 2014; 81
Nabarro (10.1016/j.actamat.2018.02.037_bib14) 1947; 59
Otto (10.1016/j.actamat.2018.02.037_bib37) 2013; 61
Laplanche (10.1016/j.actamat.2018.02.037_bib11) 2017; 128
Yasi (10.1016/j.actamat.2018.02.037_bib30) 2010; 58
Luque (10.1016/j.actamat.2018.02.037_bib31) 2014; 81
Vitos (10.1016/j.actamat.2018.02.037_bib20) 2001; 64
Patriarca (10.1016/j.actamat.2018.02.037_bib41) 2016; 112
Zhang (10.1016/j.actamat.2018.02.037_bib8) 2017; 8
Wang (10.1016/j.actamat.2018.02.037_bib45) 2014; 22
Zhao (10.1016/j.actamat.2018.02.037_bib39) 2017; 134
Wu (10.1016/j.actamat.2018.02.037_bib10) 2014; 46
Vitos (10.1016/j.actamat.2018.02.037_bib22) 2006; 54
Perdew (10.1016/j.actamat.2018.02.037_bib23) 1996; 77
Huang (10.1016/j.actamat.2018.02.037_bib27) 2015; 108
Wang (10.1016/j.actamat.2018.02.037_bib17) 2013; 61
Li (10.1016/j.actamat.2018.02.037_bib5) 2016; 534
Peierls (10.1016/j.actamat.2018.02.037_bib13) 1940; 52
Vitos (10.1016/j.actamat.2018.02.037_bib19) 2001; 87
Ma (10.1016/j.actamat.2018.02.037_bib25) 2015; 100
Zhang (10.1016/j.actamat.2018.02.037_bib40) 2017; 130
Gludovatz (10.1016/j.actamat.2018.02.037_bib3) 2014; 345
Varvenne (10.1016/j.actamat.2018.02.037_bib33) 2016; 118
Wu (10.1016/j.actamat.2018.02.037_bib42) 2014
Jo (10.1016/j.actamat.2018.02.037_bib46) 2014; 111
Tadmor (10.1016/j.actamat.2018.02.037_bib47) 2004; 52
Cantor (10.1016/j.actamat.2018.02.037_bib2) 2004; 375
Johansson (10.1016/j.actamat.2018.02.037_bib21) 2003; 5
Bonny (10.1016/j.actamat.2018.02.037_bib35) 2013; 21
Yeh (10.1016/j.actamat.2018.02.037_bib1) 2004; 6
Varvenne (10.1016/j.actamat.2018.02.037_bib36) 2016; 93
Laplanche (10.1016/j.actamat.2018.02.037_bib12) 2016; 118
Li (10.1016/j.actamat.2018.02.037_bib6) 2017; 123
Ojha (10.1016/j.actamat.2018.02.037_bib18) 2016; 2
Zhao (10.1016/j.actamat.2018.02.037_bib29) 2017; 124
Stepanov (10.1016/j.actamat.2018.02.037_bib4) 2015; 59
Gludovatz (10.1016/j.actamat.2018.02.037_bib7) 2016; 7
Kibey (10.1016/j.actamat.2018.02.037_bib16) 2007; 55
Tian (10.1016/j.actamat.2018.02.037_bib28) 2017; 136
References_xml – volume: 55
  start-page: 6843
  year: 2007
  end-page: 6851
  ident: bib16
  article-title: Predicting twinning stress in fcc metals: linking twin-energy pathways to twin nucleation
  publication-title: Acta Mater.
– volume: 77
  start-page: 3865
  year: 1996
  ident: bib23
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 120
  start-page: 108
  year: 2016
  end-page: 119
  ident: bib38
  article-title: Thermal activation mechanisms and labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys
  publication-title: Acta Mater.
– volume: 136
  start-page: 215
  year: 2017
  end-page: 223
  ident: bib28
  article-title: A first principles study of the stacking fault energies for fcc Co-based binary alloys
  publication-title: Acta Mater.
– volume: 64
  start-page: 605
  year: 2011
  end-page: 608
  ident: bib48
  article-title: A universal scaling of planar fault energy barriers in face-centered cubic metals
  publication-title: Scripta Mater.
– volume: 59
  start-page: 8
  year: 2015
  end-page: 17
  ident: bib4
  article-title: Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy
  publication-title: Intermetallics
– volume: 46
  start-page: 131
  year: 2014
  end-page: 140
  ident: bib10
  article-title: Recovery, recrystallization, grain growth and phase stability of a family of fcc-structured multi-component equiatomic solid solution alloys
  publication-title: Intermetallics
– volume: 375
  start-page: 213
  year: 2004
  end-page: 218
  ident: bib2
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng. A
– volume: 124
  start-page: 100
  year: 2017
  end-page: 107
  ident: bib29
  article-title: Tuning the plasticity of Ni-Mo solid solution in Ni-based superalloys by ab initio calculations
  publication-title: Mater. Des.
– volume: 22
  start-page: 055008
  year: 2014
  ident: bib45
  article-title: Modeling of pseudotwinning in Fe3Ga
  publication-title: Model. Simulat. Mater. Sci. Eng.
– volume: 81
  start-page: 428
  year: 2014
  end-page: 441
  ident: bib9
  article-title: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures
  publication-title: Acta Mater.
– volume: 8
  start-page: 14390
  year: 2017
  ident: bib8
  article-title: Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy
  publication-title: Nat. Commun.
– volume: 19
  year: 2011
  ident: bib34
  article-title: Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy
  publication-title: Model. Simulat. Mater. Sci. Eng.
– volume: 118
  start-page: 164
  year: 2016
  end-page: 176
  ident: bib33
  article-title: Theory of strengthening in fcc high entropy alloys
  publication-title: Acta Mater.
– year: 2014
  ident: bib42
  article-title: Temperature and Alloying Effects on the Mechanical Properties of Equiatomic Fcc Solid Solution Alloys
– volume: 64
  year: 2001
  ident: bib20
  article-title: Total-energy method based on the exact muffin-tin orbitals theory
  publication-title: Phys. Rev. B
– volume: 128
  start-page: 292
  year: 2017
  end-page: 303
  ident: bib11
  article-title: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi
  publication-title: Acta Mater.
– volume: 52
  start-page: 34
  year: 1940
  ident: bib13
  article-title: The size of a dislocation
  publication-title: Proc. Phys. Soc.
– volume: 21
  year: 2013
  ident: bib35
  article-title: Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy
  publication-title: Model. Simulat. Mater. Sci. Eng.
– volume: 61
  start-page: 6790
  year: 2013
  end-page: 6801
  ident: bib17
  article-title: Twinning stress in shape memory alloys: theory and experiments
  publication-title: Acta Mater.
– volume: 118
  start-page: 152
  year: 2016
  end-page: 163
  ident: bib12
  article-title: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy
  publication-title: Acta Mater.
– volume: 130
  start-page: 96
  year: 2017
  end-page: 99
  ident: bib40
  article-title: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys
  publication-title: Scripta Mater.
– volume: 112
  start-page: 54
  year: 2016
  end-page: 57
  ident: bib41
  article-title: Slip nucleation in single crystal FeNiCoCrMn high entropy alloy
  publication-title: Scripta Mater.
– volume: 2
  start-page: 180
  year: 2016
  end-page: 195
  ident: bib18
  article-title: Critical stresses for twinning, slip, and transformation in Ti-based shape memory alloys
  publication-title: Shap. Mem. Superelasticity
– volume: 345
  start-page: 1153
  year: 2014
  end-page: 1158
  ident: bib3
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
– volume: 7
  year: 2016
  ident: bib7
  article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures
  publication-title: Nat. Commun.
– volume: 100
  start-page: 90
  year: 2015
  end-page: 97
  ident: bib25
  article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one
  publication-title: Acta Mater.
– volume: 111
  start-page: 6560
  year: 2014
  end-page: 6565
  ident: bib46
  article-title: Theory for plasticity of face-centered cubic metals
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 59
  start-page: 256
  year: 1947
  ident: bib14
  article-title: Dislocations in a simple cubic lattice
  publication-title: Proc. Phys. Soc.
– volume: 91
  year: 2007
  ident: bib15
  article-title: Energy pathways and directionality in deformation twinning
  publication-title: Appl. Phys. Lett.
– volume: 87
  year: 2001
  ident: bib19
  article-title: Anisotropic lattice distortions in random alloys from first-principles theory
  publication-title: Phys. Rev. Lett.
– volume: 45
  start-page: 15
  year: 1984
  end-page: 22
  ident: bib26
  article-title: The disordered local moment picture of itinerant magnetism at finite temperatures
  publication-title: J. Magn. Magn Mater.
– volume: 81
  start-page: 442
  year: 2014
  end-page: 456
  ident: bib31
  article-title: A new mechanism for twin growth in Mg alloys
  publication-title: Acta Mater.
– volume: 54
  start-page: 3821
  year: 2006
  end-page: 3826
  ident: bib22
  article-title: Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory
  publication-title: Acta Mater.
– volume: 6
  year: 2016
  ident: bib24
  article-title: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity
  publication-title: Sci. Rep.
– volume: 134
  start-page: 334
  year: 2017
  end-page: 345
  ident: bib39
  article-title: Stacking fault energies of face-centered cubic concentrated solid solution alloys
  publication-title: Acta Mater.
– volume: 108
  start-page: 44
  year: 2015
  end-page: 47
  ident: bib27
  article-title: Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy
  publication-title: Scripta Mater.
– volume: 71
  start-page: 925
  year: 1995
  end-page: 947
  ident: bib44
  article-title: An in-situ observation of mechanical twin nucleation and propagation in TiAl
  publication-title: Philos. Mag. A
– volume: 52
  start-page: 2507
  year: 2004
  end-page: 2519
  ident: bib47
  article-title: A first-principles measure for the twinnability of fcc metals
  publication-title: J. Mech. Phys. Solid.
– volume: 123
  start-page: 285
  year: 2017
  end-page: 294
  ident: bib6
  article-title: High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures
  publication-title: Acta Mater.
– volume: 58
  start-page: 5704
  year: 2010
  end-page: 5713
  ident: bib30
  article-title: First-principles data for solid-solution strengthening of magnesium: from geometry and chemistry to properties
  publication-title: Acta Mater.
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib1
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 534
  start-page: 227
  year: 2016
  end-page: 230
  ident: bib5
  article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
  publication-title: Nature
– volume: 39
  start-page: 74
  year: 2013
  end-page: 78
  ident: bib43
  article-title: Tensile properties of high-and medium-entropy alloys
  publication-title: Intermetallics
– volume: 5
  start-page: 931
  year: 2003
  end-page: 936
  ident: bib21
  article-title: Chemical composition-elastic property maps of austenitic stainless steels
  publication-title: Solid State Sci.
– volume: 93
  start-page: 104201
  year: 2016
  ident: bib36
  article-title: Average-atom interatomic potential for random alloys
  publication-title: Phys. Rev. B
– volume: 61
  start-page: 5743
  year: 2013
  end-page: 5755
  ident: bib37
  article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
  publication-title: Acta Mater.
– volume: 80
  start-page: 278
  year: 2014
  end-page: 287
  ident: bib32
  article-title: Solute strengthening of twinning dislocations in Mg alloys
  publication-title: Acta Mater.
– volume: 54
  start-page: 3821
  issue: 14
  year: 2006
  ident: 10.1016/j.actamat.2018.02.037_bib22
  article-title: Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.04.013
– volume: 80
  start-page: 278
  year: 2014
  ident: 10.1016/j.actamat.2018.02.037_bib32
  article-title: Solute strengthening of twinning dislocations in Mg alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.07.045
– volume: 45
  start-page: 15
  issue: 1
  year: 1984
  ident: 10.1016/j.actamat.2018.02.037_bib26
  article-title: The disordered local moment picture of itinerant magnetism at finite temperatures
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/0304-8853(84)90367-6
– volume: 118
  start-page: 164
  year: 2016
  ident: 10.1016/j.actamat.2018.02.037_bib33
  article-title: Theory of strengthening in fcc high entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.07.040
– volume: 19
  issue: 8
  year: 2011
  ident: 10.1016/j.actamat.2018.02.037_bib34
  article-title: Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy
  publication-title: Model. Simulat. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/19/8/085008
– volume: 108
  start-page: 44
  year: 2015
  ident: 10.1016/j.actamat.2018.02.037_bib27
  article-title: Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2015.05.041
– volume: 128
  start-page: 292
  year: 2017
  ident: 10.1016/j.actamat.2018.02.037_bib11
  article-title: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.036
– volume: 59
  start-page: 256
  issue: 2
  year: 1947
  ident: 10.1016/j.actamat.2018.02.037_bib14
  article-title: Dislocations in a simple cubic lattice
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0959-5309/59/2/309
– volume: 2
  start-page: 180
  issue: 2
  year: 2016
  ident: 10.1016/j.actamat.2018.02.037_bib18
  article-title: Critical stresses for twinning, slip, and transformation in Ti-based shape memory alloys
  publication-title: Shap. Mem. Superelasticity
  doi: 10.1007/s40830-016-0061-4
– volume: 46
  start-page: 131
  year: 2014
  ident: 10.1016/j.actamat.2018.02.037_bib10
  article-title: Recovery, recrystallization, grain growth and phase stability of a family of fcc-structured multi-component equiatomic solid solution alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.10.024
– volume: 120
  start-page: 108
  year: 2016
  ident: 10.1016/j.actamat.2018.02.037_bib38
  article-title: Thermal activation mechanisms and labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.047
– volume: 130
  start-page: 96
  year: 2017
  ident: 10.1016/j.actamat.2018.02.037_bib40
  article-title: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2016.11.014
– volume: 52
  start-page: 2507
  issue: 11
  year: 2004
  ident: 10.1016/j.actamat.2018.02.037_bib47
  article-title: A first-principles measure for the twinnability of fcc metals
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2004.05.002
– volume: 64
  start-page: 605
  issue: 7
  year: 2011
  ident: 10.1016/j.actamat.2018.02.037_bib48
  article-title: A universal scaling of planar fault energy barriers in face-centered cubic metals
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2010.11.033
– volume: 59
  start-page: 8
  year: 2015
  ident: 10.1016/j.actamat.2018.02.037_bib4
  article-title: Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2014.12.004
– volume: 87
  issue: 15
  year: 2001
  ident: 10.1016/j.actamat.2018.02.037_bib19
  article-title: Anisotropic lattice distortions in random alloys from first-principles theory
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.156401
– volume: 123
  start-page: 285
  year: 2017
  ident: 10.1016/j.actamat.2018.02.037_bib6
  article-title: High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.10.038
– volume: 21
  issue: 8
  year: 2013
  ident: 10.1016/j.actamat.2018.02.037_bib35
  article-title: Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy
  publication-title: Model. Simulat. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/21/8/085004
– volume: 6
  start-page: 299
  issue: 5
  year: 2004
  ident: 10.1016/j.actamat.2018.02.037_bib1
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 112
  start-page: 54
  year: 2016
  ident: 10.1016/j.actamat.2018.02.037_bib41
  article-title: Slip nucleation in single crystal FeNiCoCrMn high entropy alloy
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2015.09.009
– volume: 375
  start-page: 213
  year: 2004
  ident: 10.1016/j.actamat.2018.02.037_bib2
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.10.257
– year: 2014
  ident: 10.1016/j.actamat.2018.02.037_bib42
– volume: 91
  issue: 18
  year: 2007
  ident: 10.1016/j.actamat.2018.02.037_bib15
  article-title: Energy pathways and directionality in deformation twinning
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2800806
– volume: 5
  start-page: 931
  issue: 6
  year: 2003
  ident: 10.1016/j.actamat.2018.02.037_bib21
  article-title: Chemical composition-elastic property maps of austenitic stainless steels
  publication-title: Solid State Sci.
  doi: 10.1016/S1293-2558(03)00118-3
– volume: 61
  start-page: 6790
  issue: 18
  year: 2013
  ident: 10.1016/j.actamat.2018.02.037_bib17
  article-title: Twinning stress in shape memory alloys: theory and experiments
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.07.053
– volume: 7
  year: 2016
  ident: 10.1016/j.actamat.2018.02.037_bib7
  article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10602
– volume: 58
  start-page: 5704
  issue: 17
  year: 2010
  ident: 10.1016/j.actamat.2018.02.037_bib30
  article-title: First-principles data for solid-solution strengthening of magnesium: from geometry and chemistry to properties
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.06.045
– volume: 136
  start-page: 215
  year: 2017
  ident: 10.1016/j.actamat.2018.02.037_bib28
  article-title: A first principles study of the stacking fault energies for fcc Co-based binary alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.07.010
– volume: 39
  start-page: 74
  year: 2013
  ident: 10.1016/j.actamat.2018.02.037_bib43
  article-title: Tensile properties of high-and medium-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.03.018
– volume: 93
  start-page: 104201
  issue: 10
  year: 2016
  ident: 10.1016/j.actamat.2018.02.037_bib36
  article-title: Average-atom interatomic potential for random alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.104201
– volume: 100
  start-page: 90
  year: 2015
  ident: 10.1016/j.actamat.2018.02.037_bib25
  article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.050
– volume: 534
  start-page: 227
  issue: 7606
  year: 2016
  ident: 10.1016/j.actamat.2018.02.037_bib5
  article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
  publication-title: Nature
  doi: 10.1038/nature17981
– volume: 71
  start-page: 925
  issue: 5
  year: 1995
  ident: 10.1016/j.actamat.2018.02.037_bib44
  article-title: An in-situ observation of mechanical twin nucleation and propagation in TiAl
  publication-title: Philos. Mag. A
  doi: 10.1080/01418619508236229
– volume: 55
  start-page: 6843
  issue: 20
  year: 2007
  ident: 10.1016/j.actamat.2018.02.037_bib16
  article-title: Predicting twinning stress in fcc metals: linking twin-energy pathways to twin nucleation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.08.042
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: 10.1016/j.actamat.2018.02.037_bib23
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 22
  start-page: 055008
  issue: 5
  year: 2014
  ident: 10.1016/j.actamat.2018.02.037_bib45
  article-title: Modeling of pseudotwinning in Fe3Ga
  publication-title: Model. Simulat. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/22/5/055008
– volume: 64
  issue: 1
  year: 2001
  ident: 10.1016/j.actamat.2018.02.037_bib20
  article-title: Total-energy method based on the exact muffin-tin orbitals theory
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.014107
– volume: 8
  start-page: 14390
  year: 2017
  ident: 10.1016/j.actamat.2018.02.037_bib8
  article-title: Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14390
– volume: 134
  start-page: 334
  year: 2017
  ident: 10.1016/j.actamat.2018.02.037_bib39
  article-title: Stacking fault energies of face-centered cubic concentrated solid solution alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.05.001
– volume: 124
  start-page: 100
  year: 2017
  ident: 10.1016/j.actamat.2018.02.037_bib29
  article-title: Tuning the plasticity of Ni-Mo solid solution in Ni-based superalloys by ab initio calculations
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.03.057
– volume: 118
  start-page: 152
  year: 2016
  ident: 10.1016/j.actamat.2018.02.037_bib12
  article-title: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.07.038
– volume: 61
  start-page: 5743
  issue: 15
  year: 2013
  ident: 10.1016/j.actamat.2018.02.037_bib37
  article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.06.018
– volume: 52
  start-page: 34
  issue: 1
  year: 1940
  ident: 10.1016/j.actamat.2018.02.037_bib13
  article-title: The size of a dislocation
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0959-5309/52/1/305
– volume: 111
  start-page: 6560
  issue: 18
  year: 2014
  ident: 10.1016/j.actamat.2018.02.037_bib46
  article-title: Theory for plasticity of face-centered cubic metals
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1400786111
– volume: 345
  start-page: 1153
  issue: 6201
  year: 2014
  ident: 10.1016/j.actamat.2018.02.037_bib3
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
  doi: 10.1126/science.1254581
– volume: 81
  start-page: 428
  year: 2014
  ident: 10.1016/j.actamat.2018.02.037_bib9
  article-title: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.08.026
– volume: 6
  year: 2016
  ident: 10.1016/j.actamat.2018.02.037_bib24
  article-title: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity
  publication-title: Sci. Rep.
– volume: 81
  start-page: 442
  year: 2014
  ident: 10.1016/j.actamat.2018.02.037_bib31
  article-title: A new mechanism for twin growth in Mg alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.08.052
SSID ssj0012740
Score 2.5972173
Snippet The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 388
SubjectTerms Critical resolved shear stress (CRSS)
Density functional theory
Medium and high entropy alloys (MHEAs)
Twinning nucleation
Title Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys
URI https://dx.doi.org/10.1016/j.actamat.2018.02.037
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227752
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-356197
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYCZ2mHIOkDdfMAhzabbPEh0RwNJYGTAl6aBN4ImqISOa1kuDICL_3tvdPDSYc2QCZBAgkRd6fjR93dd4R88TYUFoB34GKeBVLPwQ9y7QJufShTqxhzdZbvNJ7cyKtZNNshSVcLg2mVre9vfHrtrdsnw1aaw2WeD78zEWnkowKjxNgYFvFJqdDKB7-3aR4MTl1NpXCkAxz9VMUzXMCSKwvAEDO8RjV1J7ZD_8f-9JxItN58LvbJXosa6bhZ2AHZ8cU78vYZl-B7cts1LaBN-QcFNEqrx7xuSUQLpC2ulUDzgiarpJzCoRh2sJRidH39k9oipchdTPF3b7ncUIzIb359IDcX59fJJGibJgRORmEVMBuGlqtUequFl5kWQssMYAZTFr425kUmAYXwiGda8jmLtbahdMyJNNYuTMVH0ivKwn8iVAB6dCzy6VyNMOwLFz1SmfYAEbmNoz6RnaiMaxnFsbHFD9Olji1MK2GDEjYhNyDhPhlspy0bSo2XJow6PZi_bMOA239p6mmjt-2bkE77LL8dm3J1Zx6qe8O5UhHvk6__G7heGwFIU6vPr1_LIXmDd0225BHpVau1PwZEU81PapM9Ibvjy2-T6R9mcfYF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9IOhD3fLyofQWNnacZH3ggBbQUuheCoib63WcEmizqyUrtBf-FH-QmTwWOBQkJE6RkjixZpx5xN98A_DNGT8wGHh7NhKpJ9UA7aBQ1hPG-TIxMee2RPn2o96J_HEWns3BbVMLQ7DK2vZXNr201vWZdi3N9ijL2r94ECrio8JFSXtjqkZWHrrpNeZtV9sHu6jkTSH29467Pa9uLeBZGfqFx43vGxEn0hkVOJliWq9kis6YxwbXJHdBKtFXi1CkSooBj5QyvrTcBkmkrJ8E-Nw3sCDRXFDbhK2bGa6EY5pXlSaHyqPp3ZcNtS9QRoXBSJQgZZ2SK5T6r__HIT5kLi293f4SLNZhKtupJLEMcy7_AO8fkBd-hNOmSwKr6k0Yhr-suM7KHkgsJ57kUussy1l33B32MQtHl5kw2s6f_GMmTxiRJTP6vzwcTRlBAKZXn-DkVUT5GebzYe6-AAswXLU8dMkg7tA-Mx5UJ06Vw5hUmChsgWxEpW1NYU6dNP7qBqt2oWsJa5Kw9oVGCbdgazZsVHF4PDeg0-hBP1qMGv3Mc0O_V3qbvYn4u3ez0x09HP_Rl8W5FiKOQ9GCzadunEx0gKGtir--fC4b8LZ3_PNIHx30D1fgHV2poJqrMF-MJ24Nw6lisF4uXwa_X_t7uQOMti-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+stress+for+twinning+nucleation+in+CrCoNi-based+medium+and+high+entropy+alloys&rft.jtitle=Acta+materialia&rft.au=Huang%2C+He&rft.au=Li%2C+Xiaoqing&rft.au=Dong%2C+Zhihua&rft.au=Li%2C+Wei&rft.date=2018-05-01&rft.issn=1359-6454&rft.volume=149&rft.spage=388&rft_id=info:doi/10.1016%2Fj.actamat.2018.02.037&rft.externalDocID=oai_DiVA_org_uu_356197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon