Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys
The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The twinning critical resolved shear stress (CRSS) is a fundamental parameter for evaluating the strength-ductility properties of MHEAs. Here we...
Saved in:
Published in | Acta materialia Vol. 149; pp. 388 - 396 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The twinning critical resolved shear stress (CRSS) is a fundamental parameter for evaluating the strength-ductility properties of MHEAs. Here we construct and apply an extended twinning nucleation Peierls-Nabarro (P-N) model to predict the twinning CRSSes of face-centered cubic (FCC) CrCoNi-based MHEAs. The order of the twinning CRSSes of the selected alloys is CrCoNi>CrCoNiMn>CrCoNiFe>CrCoNiFeMn and the values are 291, 277, 274 and 236 MPa, respectively. These theoretical predictions agree very well with the experimental twinning CRSSes of CrCoNi and CrCoNiFeMn accounting for 260±30 and 235±10 MPa, respectively and are perfectly consistent with the strength-ductility properties including yield stress, ultimate tensile stress and uniform elongation for fracture of the FCC CrCoNi-based MHEAs obtained at cryogenic temperatures. The present method offers a first-principle quantum-mechanical tool for optimizing and designing new MHEAs with exceptional mechanical properties.
[Display omitted] |
---|---|
AbstractList | The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The twinning critical resolved shear stress (CRSS) is a fundamental parameter for evaluating the strength-ductility properties of MHEAs. Here we construct and apply an extended twinning nucleation Peierls-Nabarro (P-N) model to predict the twinning CRSSes of face-centered cubic (FCC) CrCoNi-based MHEAs. The order of the twinning CRSSes of the selected alloys is CrCoNi > CrCoNiMn > CrCoNiFe > CrCoNiFeMn and the values are 291, 277, 274 and 236 MPa, respectively. These theoretical predictions agree very well with the experimental twinning CRSSes of CrCoNi and CrCoNiFeMn accounting for 260 +/- 30 and 235 +/- 10 MPa, respectively and are perfectly consistent with the strength-ductility properties including yield stress, ultimate tensile stress and uniform elongation for fracture of the FCC CrCoNi-based MHEAs obtained at cryogenic temperatures. The present method offers a first-principle quantum-mechanical tool for optimizing and designing new MHEAs with exceptional mechanical properties. The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The twinning critical resolved shear stress (CRSS) is a fundamental parameter for evaluating the strength-ductility properties of MHEAs. Here we construct and apply an extended twinning nucleation Peierls-Nabarro (P-N) model to predict the twinning CRSSes of face-centered cubic (FCC) CrCoNi-based MHEAs. The order of the twinning CRSSes of the selected alloys is CrCoNi>CrCoNiMn>CrCoNiFe>CrCoNiFeMn and the values are 291, 277, 274 and 236 MPa, respectively. These theoretical predictions agree very well with the experimental twinning CRSSes of CrCoNi and CrCoNiFeMn accounting for 260±30 and 235±10 MPa, respectively and are perfectly consistent with the strength-ductility properties including yield stress, ultimate tensile stress and uniform elongation for fracture of the FCC CrCoNi-based MHEAs obtained at cryogenic temperatures. The present method offers a first-principle quantum-mechanical tool for optimizing and designing new MHEAs with exceptional mechanical properties. [Display omitted] The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The twinning critical resolved shear stress (CRSS) is a fundamental parameter for evaluating the strength-ductility properties of MHEAs. Here we construct and apply an extended twinning nucleation Peierls-Nabarro (P-N) model to predict the twinning CRSSes of face-centered cubic (FCC) CrCoNi-based MHEAs. The order of the twinning CRSSes of the selected alloys is CrCoNi > CrCoNiMn > CrCoNiFe > CrCoNiFeMn and the values are 291, 277, 274 and 236 MPa, respectively. These theoretical predictions agree very well with the experimental twinning CRSSes of CrCoNi and CrCoNiFeMn accounting for 260 +/- 30 and 235 +/- 10 MPa, respectively and are perfectly consistent with the strength-ductility properties including yield stress, ultimate tensile stress and uniform elongation for fracture of the FCC CrCoNi-based MHEAs obtained at cryogenic temperatures. The present method offers a first-principle quantum-mechanical tool for optimizing and designing new MHEAs with exceptional mechanical properties. |
Author | Vitos, Levente Huang, Shuo Huang, He Li, Xiaoqing Li, Wei Meng, Daqiao Lai, Xinchun Dong, Zhihua Liu, Tianwei Zhu, Shengfa |
Author_xml | – sequence: 1 givenname: He surname: Huang fullname: Huang, He email: hehua@kth.se organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-10044, Sweden – sequence: 2 givenname: Xiaoqing surname: Li fullname: Li, Xiaoqing organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-10044, Sweden – sequence: 3 givenname: Zhihua surname: Dong fullname: Dong, Zhihua organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-10044, Sweden – sequence: 4 givenname: Wei surname: Li fullname: Li, Wei organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-10044, Sweden – sequence: 5 givenname: Shuo surname: Huang fullname: Huang, Shuo organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-10044, Sweden – sequence: 6 givenname: Daqiao surname: Meng fullname: Meng, Daqiao email: mengdaqiao@caep.cn organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621900, PR China – sequence: 7 givenname: Xinchun surname: Lai fullname: Lai, Xinchun organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621900, PR China – sequence: 8 givenname: Tianwei surname: Liu fullname: Liu, Tianwei organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621900, PR China – sequence: 9 givenname: Shengfa surname: Zhu fullname: Zhu, Shengfa organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621900, PR China – sequence: 10 givenname: Levente orcidid: 0000-0003-2832-3293 surname: Vitos fullname: Vitos, Levente email: levente@kth.se organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-10044, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227752$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-356197$$DView record from Swedish Publication Index |
BookMark | eNqFkU1P3DAQhq2KSgXan1DJP4Ck_kzW4oBQoLQSai8tV2vWcXZnydor2wHtv29g4dLLnmYO7zMjvc8ZOQkxeEK-clZzxptvmxpcgS2UWjC-qJmomWw_kFO-aGUllJYn8y61qRql1SdylvOGMS5axU7JQ5ewoIOR5pJ8znSIiZZnDAHDiobJjR4KxkAx0C518RdWS8i-p1vf47SlEHq6xtWa-lBS3O0pjGPc58_k4wBj9l_e5jn5-_32T_ejuv9997O7vq-c0qxUHBgD0fbKg5FeDUZKowa9ULwFbhru5aAaJYUWg1FiyRtjgCnHnewb41gvz8nF4W5-9rtpaXcJt5D2NgLaG3y4tjGt7DRZqRtu2jleHY8_lrUVom21mPOXh7xLMefkB-uwvPZREuBoObMvBuzGvhmwLwYsE3Y2MNP6P_r93zHu6sD5ubkn9Mlmhz64ufHkXbF9xCMX_gGLQKYT |
CitedBy_id | crossref_primary_10_1016_j_actamat_2019_11_055 crossref_primary_10_1016_j_actamat_2023_119230 crossref_primary_10_1016_j_intermet_2024_108560 crossref_primary_10_3390_solids4040021 crossref_primary_10_1088_1361_648X_abda78 crossref_primary_10_1016_j_jallcom_2020_154918 crossref_primary_10_1016_j_mtcomm_2023_106435 crossref_primary_10_1016_j_matpr_2019_09_084 crossref_primary_10_1002_adem_202400773 crossref_primary_10_1016_j_mtcomm_2023_107884 crossref_primary_10_1016_j_jmrt_2020_05_069 crossref_primary_10_3390_met13091527 crossref_primary_10_1016_j_jmst_2021_02_034 crossref_primary_10_1016_j_actamat_2018_12_015 crossref_primary_10_1016_j_intermet_2021_107239 crossref_primary_10_1016_j_msea_2023_145142 crossref_primary_10_1016_j_jallcom_2020_155332 crossref_primary_10_1016_j_actamat_2022_117693 crossref_primary_10_1016_j_scriptamat_2018_06_002 crossref_primary_10_1016_j_jallcom_2019_04_035 crossref_primary_10_1080_02670836_2020_1851437 crossref_primary_10_1016_j_jallcom_2022_168016 crossref_primary_10_1016_j_actamat_2024_120190 crossref_primary_10_3390_cryst10121154 crossref_primary_10_1016_j_mser_2021_100645 crossref_primary_10_1557_jmr_2020_256 crossref_primary_10_1016_j_jmst_2020_08_065 crossref_primary_10_1016_j_actamat_2020_03_004 crossref_primary_10_1016_j_actamat_2022_117989 crossref_primary_10_1016_j_ijfatigue_2023_107723 crossref_primary_10_1080_08927022_2022_2032692 crossref_primary_10_1016_j_scriptamat_2019_12_004 crossref_primary_10_1103_PhysRevMaterials_7_053601 crossref_primary_10_1016_j_intermet_2018_12_009 crossref_primary_10_1016_j_scriptamat_2019_06_019 crossref_primary_10_1073_pnas_2114167118 crossref_primary_10_1016_j_mattod_2024_10_004 crossref_primary_10_1002_adem_202001044 crossref_primary_10_1016_j_msea_2020_140101 crossref_primary_10_1016_j_jmst_2020_11_067 crossref_primary_10_1016_j_ijplas_2023_103732 crossref_primary_10_1016_j_jallcom_2024_175452 crossref_primary_10_1016_j_scriptamat_2019_10_042 crossref_primary_10_1016_j_matchar_2024_114314 crossref_primary_10_1016_j_ijplas_2020_102819 crossref_primary_10_1016_j_jmst_2021_10_006 crossref_primary_10_1016_j_matchar_2021_111284 crossref_primary_10_1016_j_jmst_2024_04_064 crossref_primary_10_1016_j_jallcom_2023_170555 crossref_primary_10_1016_j_jallcom_2020_155911 crossref_primary_10_1016_j_mechmat_2024_105084 crossref_primary_10_1016_j_commatsci_2022_111831 crossref_primary_10_1007_s11665_021_06092_6 crossref_primary_10_1016_j_jallcom_2020_156321 crossref_primary_10_1016_j_mtla_2024_102250 crossref_primary_10_1073_pnas_1808660115 crossref_primary_10_1016_j_actamat_2018_08_053 crossref_primary_10_1016_j_msea_2023_145522 crossref_primary_10_1016_j_addma_2024_104332 crossref_primary_10_1016_j_jmst_2022_07_031 crossref_primary_10_1016_j_msea_2024_146453 crossref_primary_10_1038_s41598_020_58273_3 crossref_primary_10_1016_j_matchar_2019_02_034 crossref_primary_10_1016_j_addma_2020_101202 crossref_primary_10_1016_j_jmrt_2022_09_106 crossref_primary_10_1016_j_jmst_2023_12_024 crossref_primary_10_2139_ssrn_4108863 crossref_primary_10_1007_s00339_021_04835_9 crossref_primary_10_1016_j_actamat_2018_07_028 crossref_primary_10_1016_j_scriptamat_2019_01_016 crossref_primary_10_1103_PhysRevMaterials_5_075004 crossref_primary_10_1016_j_actamat_2020_11_012 crossref_primary_10_1016_j_mtcomm_2021_102960 crossref_primary_10_1016_j_wear_2021_203755 crossref_primary_10_1016_j_actamat_2023_119403 crossref_primary_10_1016_j_intermet_2021_107345 crossref_primary_10_1002_adem_201801266 crossref_primary_10_1016_j_msea_2018_09_028 crossref_primary_10_3390_e20090655 crossref_primary_10_1016_j_jallcom_2021_161412 crossref_primary_10_1016_j_intermet_2019_106682 crossref_primary_10_1063_5_0063367 crossref_primary_10_1016_j_jallcom_2018_07_033 crossref_primary_10_1016_j_actamat_2019_04_057 crossref_primary_10_1016_j_intermet_2021_107399 crossref_primary_10_1016_j_jmst_2020_02_073 crossref_primary_10_1126_sciadv_adq6398 crossref_primary_10_1016_j_intermet_2021_107271 crossref_primary_10_1016_j_mtcomm_2022_104059 crossref_primary_10_1016_j_ijplas_2022_103482 crossref_primary_10_1016_j_jmrt_2024_04_186 crossref_primary_10_1016_j_msea_2021_142059 crossref_primary_10_1016_j_actamat_2021_117371 crossref_primary_10_1016_j_msea_2021_142110 crossref_primary_10_1016_j_jallcom_2018_10_187 crossref_primary_10_1016_j_mtla_2019_100442 crossref_primary_10_1103_PhysRevE_104_025310 crossref_primary_10_1016_j_ijplas_2024_104051 crossref_primary_10_1103_PhysRevMaterials_3_113603 crossref_primary_10_1002_sstr_202400110 crossref_primary_10_1007_s11665_020_05221_x crossref_primary_10_3390_modelling5010019 crossref_primary_10_1016_j_ijplas_2023_103770 crossref_primary_10_1016_j_jmst_2020_11_029 crossref_primary_10_2139_ssrn_3981498 crossref_primary_10_1016_j_ijplas_2023_103651 crossref_primary_10_1016_j_scriptamat_2019_11_053 crossref_primary_10_1063_5_0063761 crossref_primary_10_1016_j_matchar_2018_06_019 crossref_primary_10_3390_met15030247 crossref_primary_10_1016_j_actamat_2023_118699 crossref_primary_10_1016_j_commatsci_2022_111763 crossref_primary_10_1016_j_intermet_2019_106578 crossref_primary_10_1016_j_msea_2020_140544 crossref_primary_10_1007_s11669_021_00877_x crossref_primary_10_1016_j_jallcom_2019_152025 crossref_primary_10_1016_j_matdes_2020_109396 crossref_primary_10_1016_j_jmst_2022_08_033 crossref_primary_10_1007_s40195_024_01812_y crossref_primary_10_3390_met14050560 crossref_primary_10_1016_j_msea_2020_139591 crossref_primary_10_1016_j_scriptamat_2021_114417 crossref_primary_10_1016_j_matdes_2019_107955 crossref_primary_10_1080_14686996_2022_2080512 crossref_primary_10_1016_j_jallcom_2019_03_235 crossref_primary_10_1016_j_actamat_2025_120918 crossref_primary_10_1007_s11431_019_1517_8 crossref_primary_10_1016_j_jallcom_2018_06_122 crossref_primary_10_1016_j_cossms_2022_101032 crossref_primary_10_1016_j_matchar_2022_111795 crossref_primary_10_1016_j_msea_2021_141545 crossref_primary_10_1016_j_actamat_2023_118884 crossref_primary_10_1016_j_ijplas_2021_103144 crossref_primary_10_1016_j_actamat_2023_119179 crossref_primary_10_1016_j_ijplas_2024_103940 crossref_primary_10_1016_j_jallcom_2024_177100 crossref_primary_10_1016_j_scriptamat_2019_09_020 crossref_primary_10_1016_j_ijplas_2021_102989 crossref_primary_10_1016_j_jmrt_2023_05_199 crossref_primary_10_1007_s11665_022_06794_5 crossref_primary_10_1007_s42864_021_00092_8 crossref_primary_10_1016_j_scriptamat_2021_114126 crossref_primary_10_3390_ma15196896 crossref_primary_10_1016_j_msea_2020_139224 crossref_primary_10_1016_j_jmrt_2023_10_266 crossref_primary_10_1088_2053_1591_ac45bc crossref_primary_10_1016_j_ijplas_2019_08_013 crossref_primary_10_1080_14786435_2022_2135037 crossref_primary_10_1016_j_scriptamat_2024_116250 crossref_primary_10_1016_j_ijplas_2024_104226 crossref_primary_10_1016_j_jmrt_2021_09_095 crossref_primary_10_1016_j_triboint_2024_109725 crossref_primary_10_3390_nano10010059 |
Cites_doi | 10.1016/j.actamat.2006.04.013 10.1016/j.actamat.2014.07.045 10.1016/0304-8853(84)90367-6 10.1016/j.actamat.2016.07.040 10.1088/0965-0393/19/8/085008 10.1016/j.scriptamat.2015.05.041 10.1016/j.actamat.2017.02.036 10.1088/0959-5309/59/2/309 10.1007/s40830-016-0061-4 10.1016/j.intermet.2013.10.024 10.1016/j.actamat.2016.08.047 10.1016/j.scriptamat.2016.11.014 10.1016/j.jmps.2004.05.002 10.1016/j.scriptamat.2010.11.033 10.1016/j.intermet.2014.12.004 10.1103/PhysRevLett.87.156401 10.1016/j.actamat.2016.10.038 10.1088/0965-0393/21/8/085004 10.1002/adem.200300567 10.1016/j.scriptamat.2015.09.009 10.1016/j.msea.2003.10.257 10.1063/1.2800806 10.1016/S1293-2558(03)00118-3 10.1016/j.actamat.2013.07.053 10.1038/ncomms10602 10.1016/j.actamat.2010.06.045 10.1016/j.actamat.2017.07.010 10.1016/j.intermet.2013.03.018 10.1103/PhysRevB.93.104201 10.1016/j.actamat.2015.08.050 10.1038/nature17981 10.1080/01418619508236229 10.1016/j.actamat.2007.08.042 10.1103/PhysRevLett.77.3865 10.1088/0965-0393/22/5/055008 10.1103/PhysRevB.64.014107 10.1038/ncomms14390 10.1016/j.actamat.2017.05.001 10.1016/j.matdes.2017.03.057 10.1016/j.actamat.2016.07.038 10.1016/j.actamat.2013.06.018 10.1088/0959-5309/52/1/305 10.1073/pnas.1400786111 10.1126/science.1254581 10.1016/j.actamat.2014.08.026 10.1016/j.actamat.2014.08.052 |
ContentType | Journal Article |
Copyright | 2018 Acta Materialia Inc. |
Copyright_xml | – notice: 2018 Acta Materialia Inc. |
DBID | AAYXX CITATION ADTPV AOWAS D8V DF2 |
DOI | 10.1016/j.actamat.2018.02.037 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
EndPage | 396 |
ExternalDocumentID | oai_DiVA_org_uu_356197 oai_DiVA_org_kth_227752 10_1016_j_actamat_2018_02_037 S1359645418301459 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB R2- SEW SSH T9H ZY4 ADTPV AOWAS D8V EFKBS DF2 |
ID | FETCH-LOGICAL-c450t-1a00a27d4ea93e4f93394f58417a1961e3f4643252f942b1699a04c1c3d69c0d3 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 1873-2453 |
IngestDate | Thu Aug 21 07:01:11 EDT 2025 Thu Aug 21 06:44:17 EDT 2025 Tue Jul 01 01:20:42 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Fri Feb 23 02:39:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Critical resolved shear stress (CRSS) Medium and high entropy alloys (MHEAs) Density functional theory Twinning nucleation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c450t-1a00a27d4ea93e4f93394f58417a1961e3f4643252f942b1699a04c1c3d69c0d3 |
ORCID | 0000-0003-2832-3293 |
PageCount | 9 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_356197 swepub_primary_oai_DiVA_org_kth_227752 crossref_citationtrail_10_1016_j_actamat_2018_02_037 crossref_primary_10_1016_j_actamat_2018_02_037 elsevier_sciencedirect_doi_10_1016_j_actamat_2018_02_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Acta materialia |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib3) 2014; 345 Ghazisaeidi, Hector, Curtin (bib32) 2014; 80 Zhao, Li, Sun, Gong, Vitos (bib29) 2017; 124 Nabarro (bib14) 1947; 59 Vitos (bib20) 2001; 64 Tian, Lizárraga, Larsson, Holmström, Vitos (bib28) 2017; 136 Wu, Gao, Bei (bib38) 2016; 120 Gludovatz, Hohenwarter, Thurston, Bei, Wu, George, Ritchie (bib7) 2016; 7 Zhang, Zhuang, Hu, Kai, Liu (bib40) 2017; 130 Ojha, Sehitoglu (bib18) 2016; 2 Peierls (bib13) 1940; 52 Wu, Bei, Otto, Pharr, George (bib10) 2014; 46 Kibey, Liu, Johnson, Sehitoglu (bib15) 2007; 91 Huang, Li, Lu, Tian, Shen, Holmström, Vitos (bib27) 2015; 108 Perdew, Burke, Ernzerhof (bib23) 1996; 77 Vitos, Abrikosov, Johansson (bib19) 2001; 87 Gali, George (bib43) 2013; 39 Stepanov, Tikhonovsky, Yurchenko, Zyabkin, Klimova, Zherebtsov, Efimov, Salishchev (bib4) 2015; 59 Jin, Dunham, Gleiter, Hahn, Gumbsch (bib48) 2011; 64 Vitos, Nilsson, Johansson (bib22) 2006; 54 Zhao, Stocks, Zhang (bib39) 2017; 134 Patriarca, Ojha, Sehitoglu, Chumlyakov (bib41) 2016; 112 Staunton, Gyorffy, Pindor, Stocks, Winter (bib26) 1984; 45 Varvenne, Luque, Curtin (bib33) 2016; 118 Luque, Ghazisaeidi, Curtin (bib31) 2014; 81 Wu (bib42) 2014 Otto, Dlouhỳ, Somsen, Bei, Eggeler, George (bib37) 2013; 61 Zhang, Sheng, Wang, Gludovatz, Zhang, George, Yu, Mao, Ritchie (bib8) 2017; 8 Cantor, Chang, Knight, Vincent (bib2) 2004; 375 Bonny, Terentyev, Pasianot, Poncé, Bakaev (bib34) 2011; 19 Bonny, Castin, Terentyev (bib35) 2013; 21 Yasi, Hector, Trinkle (bib30) 2010; 58 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib1) 2004; 6 Jin, Bieler (bib44) 1995; 71 Wu, Bei, Pharr, George (bib9) 2014; 81 Kibey, Liu, Johnson, Sehitoglu (bib16) 2007; 55 Ma, Grabowski, Körmann, Neugebauer, Raabe (bib25) 2015; 100 Varvenne, Luque, Nöhring, Curtin (bib36) 2016; 93 Tadmor, Bernstein (bib47) 2004; 52 Jin, Sales, Stocks, Samolyuk, Daene, Weber, Zhang, Bei (bib24) 2016; 6 Wang, Sehitoglu (bib45) 2014; 22 Laplanche, Kostka, Horst, Eggeler, George (bib12) 2016; 118 Li, Li, Feng, Zhang, Sha, Lewandowski, Liaw, Zhang (bib6) 2017; 123 Johansson, Vitos, Korzhavyi (bib21) 2003; 5 Li, Pradeep, Deng, Raabe, Tasan (bib5) 2016; 534 Laplanche, Kostka, Reinhart, Hunfeld, Eggeler, George (bib11) 2017; 128 Wang, Sehitoglu (bib17) 2013; 61 Jo, Koo, Lee, Johansson, Vitos, Kwon (bib46) 2014; 111 Jin (10.1016/j.actamat.2018.02.037_bib44) 1995; 71 Jin (10.1016/j.actamat.2018.02.037_bib24) 2016; 6 Ghazisaeidi (10.1016/j.actamat.2018.02.037_bib32) 2014; 80 Wu (10.1016/j.actamat.2018.02.037_bib38) 2016; 120 Gali (10.1016/j.actamat.2018.02.037_bib43) 2013; 39 Jin (10.1016/j.actamat.2018.02.037_bib48) 2011; 64 Staunton (10.1016/j.actamat.2018.02.037_bib26) 1984; 45 Bonny (10.1016/j.actamat.2018.02.037_bib34) 2011; 19 Kibey (10.1016/j.actamat.2018.02.037_bib15) 2007; 91 Wu (10.1016/j.actamat.2018.02.037_bib9) 2014; 81 Nabarro (10.1016/j.actamat.2018.02.037_bib14) 1947; 59 Otto (10.1016/j.actamat.2018.02.037_bib37) 2013; 61 Laplanche (10.1016/j.actamat.2018.02.037_bib11) 2017; 128 Yasi (10.1016/j.actamat.2018.02.037_bib30) 2010; 58 Luque (10.1016/j.actamat.2018.02.037_bib31) 2014; 81 Vitos (10.1016/j.actamat.2018.02.037_bib20) 2001; 64 Patriarca (10.1016/j.actamat.2018.02.037_bib41) 2016; 112 Zhang (10.1016/j.actamat.2018.02.037_bib8) 2017; 8 Wang (10.1016/j.actamat.2018.02.037_bib45) 2014; 22 Zhao (10.1016/j.actamat.2018.02.037_bib39) 2017; 134 Wu (10.1016/j.actamat.2018.02.037_bib10) 2014; 46 Vitos (10.1016/j.actamat.2018.02.037_bib22) 2006; 54 Perdew (10.1016/j.actamat.2018.02.037_bib23) 1996; 77 Huang (10.1016/j.actamat.2018.02.037_bib27) 2015; 108 Wang (10.1016/j.actamat.2018.02.037_bib17) 2013; 61 Li (10.1016/j.actamat.2018.02.037_bib5) 2016; 534 Peierls (10.1016/j.actamat.2018.02.037_bib13) 1940; 52 Vitos (10.1016/j.actamat.2018.02.037_bib19) 2001; 87 Ma (10.1016/j.actamat.2018.02.037_bib25) 2015; 100 Zhang (10.1016/j.actamat.2018.02.037_bib40) 2017; 130 Gludovatz (10.1016/j.actamat.2018.02.037_bib3) 2014; 345 Varvenne (10.1016/j.actamat.2018.02.037_bib33) 2016; 118 Wu (10.1016/j.actamat.2018.02.037_bib42) 2014 Jo (10.1016/j.actamat.2018.02.037_bib46) 2014; 111 Tadmor (10.1016/j.actamat.2018.02.037_bib47) 2004; 52 Cantor (10.1016/j.actamat.2018.02.037_bib2) 2004; 375 Johansson (10.1016/j.actamat.2018.02.037_bib21) 2003; 5 Bonny (10.1016/j.actamat.2018.02.037_bib35) 2013; 21 Yeh (10.1016/j.actamat.2018.02.037_bib1) 2004; 6 Varvenne (10.1016/j.actamat.2018.02.037_bib36) 2016; 93 Laplanche (10.1016/j.actamat.2018.02.037_bib12) 2016; 118 Li (10.1016/j.actamat.2018.02.037_bib6) 2017; 123 Ojha (10.1016/j.actamat.2018.02.037_bib18) 2016; 2 Zhao (10.1016/j.actamat.2018.02.037_bib29) 2017; 124 Stepanov (10.1016/j.actamat.2018.02.037_bib4) 2015; 59 Gludovatz (10.1016/j.actamat.2018.02.037_bib7) 2016; 7 Kibey (10.1016/j.actamat.2018.02.037_bib16) 2007; 55 Tian (10.1016/j.actamat.2018.02.037_bib28) 2017; 136 |
References_xml | – volume: 55 start-page: 6843 year: 2007 end-page: 6851 ident: bib16 article-title: Predicting twinning stress in fcc metals: linking twin-energy pathways to twin nucleation publication-title: Acta Mater. – volume: 77 start-page: 3865 year: 1996 ident: bib23 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 120 start-page: 108 year: 2016 end-page: 119 ident: bib38 article-title: Thermal activation mechanisms and labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys publication-title: Acta Mater. – volume: 136 start-page: 215 year: 2017 end-page: 223 ident: bib28 article-title: A first principles study of the stacking fault energies for fcc Co-based binary alloys publication-title: Acta Mater. – volume: 64 start-page: 605 year: 2011 end-page: 608 ident: bib48 article-title: A universal scaling of planar fault energy barriers in face-centered cubic metals publication-title: Scripta Mater. – volume: 59 start-page: 8 year: 2015 end-page: 17 ident: bib4 article-title: Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy publication-title: Intermetallics – volume: 46 start-page: 131 year: 2014 end-page: 140 ident: bib10 article-title: Recovery, recrystallization, grain growth and phase stability of a family of fcc-structured multi-component equiatomic solid solution alloys publication-title: Intermetallics – volume: 375 start-page: 213 year: 2004 end-page: 218 ident: bib2 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. A – volume: 124 start-page: 100 year: 2017 end-page: 107 ident: bib29 article-title: Tuning the plasticity of Ni-Mo solid solution in Ni-based superalloys by ab initio calculations publication-title: Mater. Des. – volume: 22 start-page: 055008 year: 2014 ident: bib45 article-title: Modeling of pseudotwinning in Fe3Ga publication-title: Model. Simulat. Mater. Sci. Eng. – volume: 81 start-page: 428 year: 2014 end-page: 441 ident: bib9 article-title: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures publication-title: Acta Mater. – volume: 8 start-page: 14390 year: 2017 ident: bib8 article-title: Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy publication-title: Nat. Commun. – volume: 19 year: 2011 ident: bib34 article-title: Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy publication-title: Model. Simulat. Mater. Sci. Eng. – volume: 118 start-page: 164 year: 2016 end-page: 176 ident: bib33 article-title: Theory of strengthening in fcc high entropy alloys publication-title: Acta Mater. – year: 2014 ident: bib42 article-title: Temperature and Alloying Effects on the Mechanical Properties of Equiatomic Fcc Solid Solution Alloys – volume: 64 year: 2001 ident: bib20 article-title: Total-energy method based on the exact muffin-tin orbitals theory publication-title: Phys. Rev. B – volume: 128 start-page: 292 year: 2017 end-page: 303 ident: bib11 article-title: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi publication-title: Acta Mater. – volume: 52 start-page: 34 year: 1940 ident: bib13 article-title: The size of a dislocation publication-title: Proc. Phys. Soc. – volume: 21 year: 2013 ident: bib35 article-title: Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy publication-title: Model. Simulat. Mater. Sci. Eng. – volume: 61 start-page: 6790 year: 2013 end-page: 6801 ident: bib17 article-title: Twinning stress in shape memory alloys: theory and experiments publication-title: Acta Mater. – volume: 118 start-page: 152 year: 2016 end-page: 163 ident: bib12 article-title: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy publication-title: Acta Mater. – volume: 130 start-page: 96 year: 2017 end-page: 99 ident: bib40 article-title: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys publication-title: Scripta Mater. – volume: 112 start-page: 54 year: 2016 end-page: 57 ident: bib41 article-title: Slip nucleation in single crystal FeNiCoCrMn high entropy alloy publication-title: Scripta Mater. – volume: 2 start-page: 180 year: 2016 end-page: 195 ident: bib18 article-title: Critical stresses for twinning, slip, and transformation in Ti-based shape memory alloys publication-title: Shap. Mem. Superelasticity – volume: 345 start-page: 1153 year: 2014 end-page: 1158 ident: bib3 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science – volume: 7 year: 2016 ident: bib7 article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures publication-title: Nat. Commun. – volume: 100 start-page: 90 year: 2015 end-page: 97 ident: bib25 article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one publication-title: Acta Mater. – volume: 111 start-page: 6560 year: 2014 end-page: 6565 ident: bib46 article-title: Theory for plasticity of face-centered cubic metals publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 59 start-page: 256 year: 1947 ident: bib14 article-title: Dislocations in a simple cubic lattice publication-title: Proc. Phys. Soc. – volume: 91 year: 2007 ident: bib15 article-title: Energy pathways and directionality in deformation twinning publication-title: Appl. Phys. Lett. – volume: 87 year: 2001 ident: bib19 article-title: Anisotropic lattice distortions in random alloys from first-principles theory publication-title: Phys. Rev. Lett. – volume: 45 start-page: 15 year: 1984 end-page: 22 ident: bib26 article-title: The disordered local moment picture of itinerant magnetism at finite temperatures publication-title: J. Magn. Magn Mater. – volume: 81 start-page: 442 year: 2014 end-page: 456 ident: bib31 article-title: A new mechanism for twin growth in Mg alloys publication-title: Acta Mater. – volume: 54 start-page: 3821 year: 2006 end-page: 3826 ident: bib22 article-title: Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory publication-title: Acta Mater. – volume: 6 year: 2016 ident: bib24 article-title: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity publication-title: Sci. Rep. – volume: 134 start-page: 334 year: 2017 end-page: 345 ident: bib39 article-title: Stacking fault energies of face-centered cubic concentrated solid solution alloys publication-title: Acta Mater. – volume: 108 start-page: 44 year: 2015 end-page: 47 ident: bib27 article-title: Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy publication-title: Scripta Mater. – volume: 71 start-page: 925 year: 1995 end-page: 947 ident: bib44 article-title: An in-situ observation of mechanical twin nucleation and propagation in TiAl publication-title: Philos. Mag. A – volume: 52 start-page: 2507 year: 2004 end-page: 2519 ident: bib47 article-title: A first-principles measure for the twinnability of fcc metals publication-title: J. Mech. Phys. Solid. – volume: 123 start-page: 285 year: 2017 end-page: 294 ident: bib6 article-title: High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures publication-title: Acta Mater. – volume: 58 start-page: 5704 year: 2010 end-page: 5713 ident: bib30 article-title: First-principles data for solid-solution strengthening of magnesium: from geometry and chemistry to properties publication-title: Acta Mater. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib1 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 534 start-page: 227 year: 2016 end-page: 230 ident: bib5 article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off publication-title: Nature – volume: 39 start-page: 74 year: 2013 end-page: 78 ident: bib43 article-title: Tensile properties of high-and medium-entropy alloys publication-title: Intermetallics – volume: 5 start-page: 931 year: 2003 end-page: 936 ident: bib21 article-title: Chemical composition-elastic property maps of austenitic stainless steels publication-title: Solid State Sci. – volume: 93 start-page: 104201 year: 2016 ident: bib36 article-title: Average-atom interatomic potential for random alloys publication-title: Phys. Rev. B – volume: 61 start-page: 5743 year: 2013 end-page: 5755 ident: bib37 article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy publication-title: Acta Mater. – volume: 80 start-page: 278 year: 2014 end-page: 287 ident: bib32 article-title: Solute strengthening of twinning dislocations in Mg alloys publication-title: Acta Mater. – volume: 54 start-page: 3821 issue: 14 year: 2006 ident: 10.1016/j.actamat.2018.02.037_bib22 article-title: Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.04.013 – volume: 80 start-page: 278 year: 2014 ident: 10.1016/j.actamat.2018.02.037_bib32 article-title: Solute strengthening of twinning dislocations in Mg alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.07.045 – volume: 45 start-page: 15 issue: 1 year: 1984 ident: 10.1016/j.actamat.2018.02.037_bib26 article-title: The disordered local moment picture of itinerant magnetism at finite temperatures publication-title: J. Magn. Magn Mater. doi: 10.1016/0304-8853(84)90367-6 – volume: 118 start-page: 164 year: 2016 ident: 10.1016/j.actamat.2018.02.037_bib33 article-title: Theory of strengthening in fcc high entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.040 – volume: 19 issue: 8 year: 2011 ident: 10.1016/j.actamat.2018.02.037_bib34 article-title: Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy publication-title: Model. Simulat. Mater. Sci. Eng. doi: 10.1088/0965-0393/19/8/085008 – volume: 108 start-page: 44 year: 2015 ident: 10.1016/j.actamat.2018.02.037_bib27 article-title: Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2015.05.041 – volume: 128 start-page: 292 year: 2017 ident: 10.1016/j.actamat.2018.02.037_bib11 article-title: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.036 – volume: 59 start-page: 256 issue: 2 year: 1947 ident: 10.1016/j.actamat.2018.02.037_bib14 article-title: Dislocations in a simple cubic lattice publication-title: Proc. Phys. Soc. doi: 10.1088/0959-5309/59/2/309 – volume: 2 start-page: 180 issue: 2 year: 2016 ident: 10.1016/j.actamat.2018.02.037_bib18 article-title: Critical stresses for twinning, slip, and transformation in Ti-based shape memory alloys publication-title: Shap. Mem. Superelasticity doi: 10.1007/s40830-016-0061-4 – volume: 46 start-page: 131 year: 2014 ident: 10.1016/j.actamat.2018.02.037_bib10 article-title: Recovery, recrystallization, grain growth and phase stability of a family of fcc-structured multi-component equiatomic solid solution alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2013.10.024 – volume: 120 start-page: 108 year: 2016 ident: 10.1016/j.actamat.2018.02.037_bib38 article-title: Thermal activation mechanisms and labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.047 – volume: 130 start-page: 96 year: 2017 ident: 10.1016/j.actamat.2018.02.037_bib40 article-title: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2016.11.014 – volume: 52 start-page: 2507 issue: 11 year: 2004 ident: 10.1016/j.actamat.2018.02.037_bib47 article-title: A first-principles measure for the twinnability of fcc metals publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2004.05.002 – volume: 64 start-page: 605 issue: 7 year: 2011 ident: 10.1016/j.actamat.2018.02.037_bib48 article-title: A universal scaling of planar fault energy barriers in face-centered cubic metals publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2010.11.033 – volume: 59 start-page: 8 year: 2015 ident: 10.1016/j.actamat.2018.02.037_bib4 article-title: Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2014.12.004 – volume: 87 issue: 15 year: 2001 ident: 10.1016/j.actamat.2018.02.037_bib19 article-title: Anisotropic lattice distortions in random alloys from first-principles theory publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.156401 – volume: 123 start-page: 285 year: 2017 ident: 10.1016/j.actamat.2018.02.037_bib6 article-title: High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.10.038 – volume: 21 issue: 8 year: 2013 ident: 10.1016/j.actamat.2018.02.037_bib35 article-title: Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy publication-title: Model. Simulat. Mater. Sci. Eng. doi: 10.1088/0965-0393/21/8/085004 – volume: 6 start-page: 299 issue: 5 year: 2004 ident: 10.1016/j.actamat.2018.02.037_bib1 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 112 start-page: 54 year: 2016 ident: 10.1016/j.actamat.2018.02.037_bib41 article-title: Slip nucleation in single crystal FeNiCoCrMn high entropy alloy publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2015.09.009 – volume: 375 start-page: 213 year: 2004 ident: 10.1016/j.actamat.2018.02.037_bib2 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.10.257 – year: 2014 ident: 10.1016/j.actamat.2018.02.037_bib42 – volume: 91 issue: 18 year: 2007 ident: 10.1016/j.actamat.2018.02.037_bib15 article-title: Energy pathways and directionality in deformation twinning publication-title: Appl. Phys. Lett. doi: 10.1063/1.2800806 – volume: 5 start-page: 931 issue: 6 year: 2003 ident: 10.1016/j.actamat.2018.02.037_bib21 article-title: Chemical composition-elastic property maps of austenitic stainless steels publication-title: Solid State Sci. doi: 10.1016/S1293-2558(03)00118-3 – volume: 61 start-page: 6790 issue: 18 year: 2013 ident: 10.1016/j.actamat.2018.02.037_bib17 article-title: Twinning stress in shape memory alloys: theory and experiments publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.07.053 – volume: 7 year: 2016 ident: 10.1016/j.actamat.2018.02.037_bib7 article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures publication-title: Nat. Commun. doi: 10.1038/ncomms10602 – volume: 58 start-page: 5704 issue: 17 year: 2010 ident: 10.1016/j.actamat.2018.02.037_bib30 article-title: First-principles data for solid-solution strengthening of magnesium: from geometry and chemistry to properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.06.045 – volume: 136 start-page: 215 year: 2017 ident: 10.1016/j.actamat.2018.02.037_bib28 article-title: A first principles study of the stacking fault energies for fcc Co-based binary alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.07.010 – volume: 39 start-page: 74 year: 2013 ident: 10.1016/j.actamat.2018.02.037_bib43 article-title: Tensile properties of high-and medium-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2013.03.018 – volume: 93 start-page: 104201 issue: 10 year: 2016 ident: 10.1016/j.actamat.2018.02.037_bib36 article-title: Average-atom interatomic potential for random alloys publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.104201 – volume: 100 start-page: 90 year: 2015 ident: 10.1016/j.actamat.2018.02.037_bib25 article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.050 – volume: 534 start-page: 227 issue: 7606 year: 2016 ident: 10.1016/j.actamat.2018.02.037_bib5 article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off publication-title: Nature doi: 10.1038/nature17981 – volume: 71 start-page: 925 issue: 5 year: 1995 ident: 10.1016/j.actamat.2018.02.037_bib44 article-title: An in-situ observation of mechanical twin nucleation and propagation in TiAl publication-title: Philos. Mag. A doi: 10.1080/01418619508236229 – volume: 55 start-page: 6843 issue: 20 year: 2007 ident: 10.1016/j.actamat.2018.02.037_bib16 article-title: Predicting twinning stress in fcc metals: linking twin-energy pathways to twin nucleation publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.08.042 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 10.1016/j.actamat.2018.02.037_bib23 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 22 start-page: 055008 issue: 5 year: 2014 ident: 10.1016/j.actamat.2018.02.037_bib45 article-title: Modeling of pseudotwinning in Fe3Ga publication-title: Model. Simulat. Mater. Sci. Eng. doi: 10.1088/0965-0393/22/5/055008 – volume: 64 issue: 1 year: 2001 ident: 10.1016/j.actamat.2018.02.037_bib20 article-title: Total-energy method based on the exact muffin-tin orbitals theory publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.014107 – volume: 8 start-page: 14390 year: 2017 ident: 10.1016/j.actamat.2018.02.037_bib8 article-title: Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy publication-title: Nat. Commun. doi: 10.1038/ncomms14390 – volume: 134 start-page: 334 year: 2017 ident: 10.1016/j.actamat.2018.02.037_bib39 article-title: Stacking fault energies of face-centered cubic concentrated solid solution alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.05.001 – volume: 124 start-page: 100 year: 2017 ident: 10.1016/j.actamat.2018.02.037_bib29 article-title: Tuning the plasticity of Ni-Mo solid solution in Ni-based superalloys by ab initio calculations publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.03.057 – volume: 118 start-page: 152 year: 2016 ident: 10.1016/j.actamat.2018.02.037_bib12 article-title: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.038 – volume: 61 start-page: 5743 issue: 15 year: 2013 ident: 10.1016/j.actamat.2018.02.037_bib37 article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.06.018 – volume: 52 start-page: 34 issue: 1 year: 1940 ident: 10.1016/j.actamat.2018.02.037_bib13 article-title: The size of a dislocation publication-title: Proc. Phys. Soc. doi: 10.1088/0959-5309/52/1/305 – volume: 111 start-page: 6560 issue: 18 year: 2014 ident: 10.1016/j.actamat.2018.02.037_bib46 article-title: Theory for plasticity of face-centered cubic metals publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1400786111 – volume: 345 start-page: 1153 issue: 6201 year: 2014 ident: 10.1016/j.actamat.2018.02.037_bib3 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science doi: 10.1126/science.1254581 – volume: 81 start-page: 428 year: 2014 ident: 10.1016/j.actamat.2018.02.037_bib9 article-title: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.08.026 – volume: 6 year: 2016 ident: 10.1016/j.actamat.2018.02.037_bib24 article-title: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity publication-title: Sci. Rep. – volume: 81 start-page: 442 year: 2014 ident: 10.1016/j.actamat.2018.02.037_bib31 article-title: A new mechanism for twin growth in Mg alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.08.052 |
SSID | ssj0012740 |
Score | 2.5972173 |
Snippet | The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 388 |
SubjectTerms | Critical resolved shear stress (CRSS) Density functional theory Medium and high entropy alloys (MHEAs) Twinning nucleation |
Title | Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys |
URI | https://dx.doi.org/10.1016/j.actamat.2018.02.037 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227752 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-356197 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYCZ2mHIOkDdfMAhzabbPEh0RwNJYGTAl6aBN4ImqISOa1kuDICL_3tvdPDSYc2QCZBAgkRd6fjR93dd4R88TYUFoB34GKeBVLPwQ9y7QJufShTqxhzdZbvNJ7cyKtZNNshSVcLg2mVre9vfHrtrdsnw1aaw2WeD78zEWnkowKjxNgYFvFJqdDKB7-3aR4MTl1NpXCkAxz9VMUzXMCSKwvAEDO8RjV1J7ZD_8f-9JxItN58LvbJXosa6bhZ2AHZ8cU78vYZl-B7cts1LaBN-QcFNEqrx7xuSUQLpC2ulUDzgiarpJzCoRh2sJRidH39k9oipchdTPF3b7ncUIzIb359IDcX59fJJGibJgRORmEVMBuGlqtUequFl5kWQssMYAZTFr425kUmAYXwiGda8jmLtbahdMyJNNYuTMVH0ivKwn8iVAB6dCzy6VyNMOwLFz1SmfYAEbmNoz6RnaiMaxnFsbHFD9Olji1MK2GDEjYhNyDhPhlspy0bSo2XJow6PZi_bMOA239p6mmjt-2bkE77LL8dm3J1Zx6qe8O5UhHvk6__G7heGwFIU6vPr1_LIXmDd0225BHpVau1PwZEU81PapM9Ibvjy2-T6R9mcfYF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9IOhD3fLyofQWNnacZH3ggBbQUuheCoib63WcEmizqyUrtBf-FH-QmTwWOBQkJE6RkjixZpx5xN98A_DNGT8wGHh7NhKpJ9UA7aBQ1hPG-TIxMee2RPn2o96J_HEWns3BbVMLQ7DK2vZXNr201vWZdi3N9ijL2r94ECrio8JFSXtjqkZWHrrpNeZtV9sHu6jkTSH29467Pa9uLeBZGfqFx43vGxEn0hkVOJliWq9kis6YxwbXJHdBKtFXi1CkSooBj5QyvrTcBkmkrJ8E-Nw3sCDRXFDbhK2bGa6EY5pXlSaHyqPp3ZcNtS9QRoXBSJQgZZ2SK5T6r__HIT5kLi293f4SLNZhKtupJLEMcy7_AO8fkBd-hNOmSwKr6k0Yhr-suM7KHkgsJ57kUussy1l33B32MQtHl5kw2s6f_GMmTxiRJTP6vzwcTRlBAKZXn-DkVUT5GebzYe6-AAswXLU8dMkg7tA-Mx5UJ06Vw5hUmChsgWxEpW1NYU6dNP7qBqt2oWsJa5Kw9oVGCbdgazZsVHF4PDeg0-hBP1qMGv3Mc0O_V3qbvYn4u3ez0x09HP_Rl8W5FiKOQ9GCzadunEx0gKGtir--fC4b8LZ3_PNIHx30D1fgHV2poJqrMF-MJ24Nw6lisF4uXwa_X_t7uQOMti-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+stress+for+twinning+nucleation+in+CrCoNi-based+medium+and+high+entropy+alloys&rft.jtitle=Acta+materialia&rft.au=Huang%2C+He&rft.au=Li%2C+Xiaoqing&rft.au=Dong%2C+Zhihua&rft.au=Li%2C+Wei&rft.date=2018-05-01&rft.issn=1359-6454&rft.volume=149&rft.spage=388&rft_id=info:doi/10.1016%2Fj.actamat.2018.02.037&rft.externalDocID=oai_DiVA_org_uu_356197 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |