Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys
The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The twinning critical resolved shear stress (CRSS) is a fundamental parameter for evaluating the strength-ductility properties of MHEAs. Here we...
Saved in:
Published in | Acta materialia Vol. 149; pp. 388 - 396 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The twinning critical resolved shear stress (CRSS) is a fundamental parameter for evaluating the strength-ductility properties of MHEAs. Here we construct and apply an extended twinning nucleation Peierls-Nabarro (P-N) model to predict the twinning CRSSes of face-centered cubic (FCC) CrCoNi-based MHEAs. The order of the twinning CRSSes of the selected alloys is CrCoNi>CrCoNiMn>CrCoNiFe>CrCoNiFeMn and the values are 291, 277, 274 and 236 MPa, respectively. These theoretical predictions agree very well with the experimental twinning CRSSes of CrCoNi and CrCoNiFeMn accounting for 260±30 and 235±10 MPa, respectively and are perfectly consistent with the strength-ductility properties including yield stress, ultimate tensile stress and uniform elongation for fracture of the FCC CrCoNi-based MHEAs obtained at cryogenic temperatures. The present method offers a first-principle quantum-mechanical tool for optimizing and designing new MHEAs with exceptional mechanical properties.
[Display omitted] |
---|---|
ISSN: | 1359-6454 1873-2453 1873-2453 |
DOI: | 10.1016/j.actamat.2018.02.037 |