Production of Jet Fuel‐Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

Super Lewis acids containing the triflate anion [e.g., Hf(OTf)4, Ln(OTf)3, In(OTf)3, Al(OTf)3] and noble metal catalysts (e.g., Ru/C, Ru/Al2O3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated ra...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 11; no. 1; pp. 285 - 291
Main Authors Wang, Hongliang, Wang, Huamin, Kuhn, Eric, Tucker, Melvin P., Yang, Bin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Super Lewis acids containing the triflate anion [e.g., Hf(OTf)4, Ln(OTf)3, In(OTf)3, Al(OTf)3] and noble metal catalysts (e.g., Ru/C, Ru/Al2O3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium‐based catalysts. When a technical lignin derived from a pilot‐scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote deoxygenation reactions catalyzed by super Lewis acids. The biggest Lewiser: Super Lewis acids and noble metals form an efficient catalytic system that can overcome the energy barrier for conversion of lignin into high yield jet‐fuel range hydrocarbons. Metal triflates mediate rapid ether bond cleavage through selective bonding to the etheric oxygen, whereas the noble metal catalyzes the subsequent hydrogenation reaction, eliminating functional groups.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1864-5631
1864-564X
DOI:10.1002/cssc.201701567